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Abstract. We prove that if Γ is a countable group without a subgroup
isomorphic to Z2 that acts faithfully and minimally by orientation pre-
serving homeomorphisms on the circle, then it has a free orbit. We
give examples showing that this does not hold for actions by homeo-
morphisms of the line.

1. Introduction

Foliations of codimension one and groups of homeomorphisms of the circle
are closely related. A particular but illuminating example of a foliation
can be obtained via the suspension construction, by which an action of
a surface group on the circle gives rise to a foliation on a circle bundle
over a surface. In this example, fundamental groups of leaves correspond
to stabilizers of points under the action, so that simply connected leaves
translate into free orbits. When these foliations are minimal, either the
generic leaf is simply connected or all leaves have a fundamental group which
is not finitely generated (see [ADMV]). With this motivation, it is natural
to ask if a minimal and faithful action of the fundamental group of a surface
on the circle must have some free orbit.

It turns out that this is true in some greater generality and the purpose
of this note is to prove the following result:

Theorem 1. Let Γ be a countable group without a subgroup isomorphic to
Z2. If Γ acts faithfully and minimally by orientation preserving homeomor-
phisms on the circle, then there exists a free orbit.

Recall that a free orbit is the orbit of a point x ∈ S1 such that for every
g ∈ Γ \ {e} one has that gx 6= x.

Minimality of the action is necessary as it is shown by an example in
subsection 3.1. For actions on Homeo+(R) the result is also non-valid, see
subsection 3.2.

It is natural to wonder whether a similar result will hold in higher dimen-
sions. For example, one can ask:

Question. Is there a faithful and minimal action of the free group in two
generators on a closed surface without free orbits?

As a direct consequence of this results one deduces that if f, g ∈ Homeo+(S1)
are homeomorphisms such that f has a non-trivial interval of fixed points
and g is conjugate to an irrational rotation, then the group generated by f
and g inside Homeo+(S1) is not free (and in particular contains a copy of
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Z2). It is illustrative to try to prove this consequence directly as it sheds
light on the underlying ideas of our proof.

Remark 1. One can also see that Z2 itself does not admit faithful minimal
actions on the circle without free orbits. In fact, any group admitting such
an action must be non-abelian, as we will see in Section 4, where we give
further conditions a group acting minimally and without free orbits must
satisfy.

For an excellent panoramic of the theory of group actions on the circle, see
[G] or [N]. We are grateful to Andrés Navas for his kind feedback on an early
draft of this paper. The second author is also thankful to Fernando Alcalde,
Françoise Dal’Bo and Alberto Verjovsky for many fruitful discussions about
the topology of leaves of foliations by surfaces.

2. Proof of Theorem 1

We start with a simple remark which works for general countable groups.

Remark 2. For each g ∈ Γ\{e}, consider the set Fix(g) = {x ∈ S1 : gx =
x} of its fixed points. The points with free orbit are exactly those in⋂

g∈Γ\{e}

Fix(g)c.

If a countable group Γ acts minimally on the circle and the action has no
free orbit, then the following holds:

(1) By Baire’s Category Theorem there must exist g ∈ Γ\{e} such that
Fix(g) has non-empty interior.

(2) Since the Γ-action is minimal on S1, for every x ∈ S1 there exists
h ∈ Γ\{e} such that x is an interior point of Fix(h).

Notice that the fact that Γ is countable is crucial for the proof of this
remark as it uses Baire category theorem. It is likely that arguments in
the lines of the ones presented in [BK] may help construct a non-countable
group for which Theorem 1 fails, however, we could not construct such
and example and believe that this would exceed the purposes of this note.
The main difficulty we encountered in approaching this problem can be
summarized in the following question:

Question. Is it possible to construct a map ϕ : S1 → Homeo+(S1) such
that the group generated by the elements in the image of ϕ is free?

We return to the proof of the Theorem. The following lemma will be the
tool to obtain abelian subgroups.

Lemma 1. Let f and g be two nontrivial orientation-preserving homeomor-
phisms of the circle. If Fix(f) 6= Fix(g) and Fix(f) ∪ Fix(g) = S1, then the
subgroup of Homeo+(S1) generated by f and g is isomorphic to Z2.

Proof. Let H ⊂ Homeo+(S1) the subgroup generated by f and g. We will
begin by proving that H is abelian.

Notice that since Fix(f) ∪ Fix(g) = S1, we know that any point is either
fixed by f or fixed by g. Let x ∈ S1. Without loss of generality, assume that
x ∈ Fix(g). Therefore [f, g](x) = fgf−1(x). If x ∈ Fix(f), then x is fixed
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by both f and g and therefore by [f, g]. Otherwise, f−1(x) is not fixed by
f and is therefore fixed by g, so [f, g](x) = x. This implies that every point
is fixed by [f, g] and therefore [f, g] = id showing that f and g commute.

Next, remark that since Fix(f) 6= Fix(g) the group H cannot be cyclic.
Due to the classification of abelian groups, all we have to see is that H is
torsion-free. Since the sets Fix(f) and Fix(g) are closed they cannot be
disjoint, so any element of H must have fixed points. This means that H
does not contain an element of finite order. �

In order to prove Theorem 1, we will consider a countable group Γ acting
faithfully and minimally on S1. Assuming that the action has no free orbit,
we will prove that Γ contains a subgroup isomorphic to Z2.

We will only use that Γ is countable in order to use Remark 2 so that
there is an element whose fixed point set has non-empty interior. Under this
assumption, the result does not further use countability of Γ.

Proof of Theorem 1. For every x ∈ S1, consider the set

Ax = {I : I is an open interval in S1 and x ∈ I ⊂ Fix(g) for some g ∈ Γ\{e}}.

Remark 2 guarantees that Ax is non-empty for every x ∈ S1. We fix an
orientation in S1. The orientation induces a total order on any interval I,
and we can therefore write I = (I−, I+). In particular, the interval S1\{x}
has an order, which allows us to consider suprema and infima of subsets of
S1\{x}.

Assume that for a given x ∈ S1 the set Ax = {I+ : I ∈ Ax} is unbounded
above in the total order of S1\{x}. Consider f ∈ Γ\{e} such that x is an
interior point of Fix(f). Since Ax is unbounded, there exists g ∈ Γ whose
set of fixed points contains an interval I such that I ∪ Fix(f) = S1. In
particular, Fix(f) ∪ Fix(g) = S1, and Lemma 1 implies that Γ contains a
free abelian group of rank 2.

Otherwise, Ax must be bounded for all x ∈ S1. In this case, we can define

h : S1 → S1, h(x) = supAx.

The map h has the following properties which follow directly from its
definition:

(1) it is monotonically increasing, (i.e.: any lift of h to the line is a
monotone map)

(2) it is equivariant, meaning that for every g ∈ Γ and x ∈ S1 one has
gh(x) = h(gx).

Let us now show that h is an homeomorphism. By equivariance, it fol-
lows that the image of h is invariant by the Γ action, therefore, by mini-
mality it must be dense as otherwise h would have a proper closed invariant
subset. Now we check that h has to be strictly monotonous. Consider
V =

⋃
x/int(h−1(x)) 6=∅ int(h

−1(x)). V is an open, proper, Γ-invariant subset.

The minimality of the action implies that V is empty. Finally, since h is
strictly monotonous and has dense image, one obtains that h ∈ Homeo+(S1).

Now, we distinguish cases according to the rotation number of h ( [KH,
Chapter 11]).
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If ρ(h) is irrational, then h must be either a Denjoy counterexample or
conjugated to a rational rotation. In the former case, h has a countable
union of intervals in its wandering set, which must be Γ-invariant since h
is equivariant. This is inconsistent with the minimality of the Γ-action.
Therefore, h is conjugated to an irrational rotation, and Γ is isomorphic to
a subgroup of the centralizer of h in Homeo+(S1), but the centralizer of
an irrational rotation does not have non-trivial elements with fixed points,
which also gives a contradiction.

If ρ(h) is rational, then h has to be conjugate to a rigid rotation as
otherwise the closed set of periodic points would be a proper closed invariant
set for Γ contradicting minimality. Assume then that hn = id, we will find
g and g′ in Γ whose set of fixed points is different and whose union is S1.
For this, consider x ∈ S1 and g ∈ Γ such that Fix(g) contains x in its
interior. It follows that Fix(g) contains at least n connected components
each containing respectively x, h(x), . . . , hn−1(x). Choose a point y inside
one of those components. As h is periodic, the orbit of y by h is alternated
with the orbit of x. By the definition of h and its equivariance, we can find
g′ ∈ Γ such that Fix(g)∪Fix(g′) = S1 and both g and g′ are not the identity.
This allows one to apply Lemma 1 to conclude. �

3. Counterexamples

3.1. A non-minimal action on S1 without free orbits. We construct
here a faithful action of the fundamental group of a surface on the circle
with no free orbits. The same can be obtained by adding a global fixed
point to the example in the next subsection, but we present this example
for the particular relevance of surface groups in actions on the circle.

Let Γ be the fundamental group of an oriented compact surface of genus
greater than one. It does not contain any subgroup isomorphic to Z2. Sur-
face groups are known to be ω-residually free (see [CG]), which means that
for any finite subset X of Γ there exists a homomorphism from Γ to a free
group whose restriction to X is injective.

Consider a free subgroup F of Homeo+(R). Write Γ = ∪∞n=0Xn as an
increasing union of finite subsets, and for each n let ϕn : Γ → F be an
homomorphism that sends Xn injectively into F . Notice that, since Γ is
non-free, the Nielsen-Schreier theorem (see, for example, [S, Section 2.2.4])
implies that ϕn must have a non-trivial kernel. Take an increasing sequence
of points (xn)∞n=1 in R which does not accumulate in R. Taking S1 to be
R∪{∞} and setting x0 =∞, the circle is the union of the intervals [xn, xn+1],
for n ≥ 0. We will identify each open interval (xn, xn+1) with the real line,
so that ϕn can be seen as a representation of Γ in Homeo+(xn, xn+1).

We will define

ϕ : Γ→ Homeo+(S1)

as follows:

∗ for any g ∈ Γ, ϕ(g) fixes {xn, n ≥ 0},
∗ restricted to (xn, xn+1), ϕ(g) coincides with ϕn(g) ∈ Homeo+((xn, xn+1)).

It is clear that ϕ is a faithful representation, since each ϕn is injective
on Xn. We will see that the Γ-action defined by ϕ has no free orbits. Let
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x ∈ S1. If x is not fixed by Γ, it belongs to (xn, xn+1) for some n, and it is
therefore fixed by the non-trivial subgroup ker(ϕn).

3.2. The main theorem does not hold in R. The following example
shows that Theorem 1 is not true if we consider actions on the line. We will
construct a faithful action of the free group F2 = 〈a, b〉 on the line that is
minimal and such that every point is stabilized by some non trivial element.

We will start by defining three different F2 actions and later we will “glue”
them.

Consider

• φ1 : F2 → R such that φ1(a)(x) = x and φ1(b)(x) = x+ 1.
• φ2 : F2 → R such that φ2(a)(x) = x+ α and φ2(b)(x) = x+ β for α

and β rationally independent over Q. We also ask that 0 < α < 1
and 0 < β < 1
• φ3 : F2 → R any action with a free orbit and without global fixed

points.

Take p > 4 such that φ3(a)(p) > 4 + α and φ3(b)(p) > 4 + β. Define f ∈
Homeo+(R) satisfying f(x) = φ1(a)(x) if x < 0, f(x) = φ2(a)(x) if x ∈ [1, 4]
and f(x) = φ3(a)(x) if x > p. Now we define g ∈ Homeo+(R) satisfying
g(x) = φ2(a)(x) if x < 0, g(x) = φ2(b)(x) if x ∈ [1, 4] and g(x) = φ3(b)(x) if
x > p. Finally define f and g over [0, 1]∪ [4, p] so that Fix(f)∩Fix(g) = ∅.

Consider ψ : F2 → Homeo+(R) defines as ψ(a) = f and ψ(b) = g. Since
φ3 has a free orbit and φ3 has no global fixed point, for any g ∈ F2 − {e}
there exists x ∈ R greater than p such that φ3(g)(x) 6= x and therefore
ψ(g)(x) 6= x. This implies that ψ is a faithful action.

Now, the fact that ψ has no global fixed points implies that given x ∈ R
there exists g ∈ F2 so that ψ(g)(x) < 0 and therefore ψ(g−1ag)(x) = x
which proves that ψ has no free orbit.

It remains to check the minimality of ψ. Observe that given any x ∈ [1, 2]
it is clear that the ψ orbit of x is dense on [1, 2]. Now, since ψ(a)([1, 2]) ∩
[1, 2] 6= ∅ and ψ(b)([1, 2]) ∩ [1, 2] 6= ∅ we can deduce that F2.[1, 2], the union
of the ψ orbits of points in [1, 2], is a connected set. Also, since ψ has no
global fixed points F2.[1, 2] is unbounded in both directions and therefore
F2.[1, 2] = R. Finally, any orbit accumulates on [1, 2] and therefore on R as
claimed.

Remark 3. Since any action on R can be seen as an action on S1 = R∪{∞}
with a global fixed point, this is also an example of how Theorem 1 can fail
when the action is not minimal.

4. Further properties of minimal actions without free orbits

Remark 4. If Γ is a non-cyclic group acting minimally and faithfully with-
out free orbits con the circle, then it is non-abelian.

To see this, consider an element f ∈ Γ\{e} such that Fix(f) is non-empty.
If Γ were abelian, the set Fix(f) would be invariant by all elements of Γ, so
the action would not be minimal.



6 J. BRUM, M. MARTÍNEZ, AND R. POTRIE

Proposition 1. If Γ is a countable group acting minimally and faithfully
without free orbits on the circle, then it contains a free group in two gener-
ators.

Proof. A result conjectured by Ghys and later proved by Margulis (see [M]
or [N]), states that any group of circle homeomorphisms either preserves a
probability measure on S1 or contains a free group in two generators. If Γ
acts without free orbits, it must be non-abelian.

Suppose there is a Γ-invariant probability measure µ. Since the action
is minimal, it must have full support and no atoms. There is an home-
omorphism sending µ to the Lebesgue measure. This means Γ must be
conjugated to a group of rotations, and therefore abelian, which gives a
contradiction. �

Proposition 2. If Γ is a countable group acting minimally and faithfully
without free orbits on the circle, then it contains free abelian groups of arbi-
trarily large rank.

Proof. This follows by further inspection on the proof of our main theorem.
We just sketch the proof.

First, notice that h is defined by contradiction and if it cannot be con-
structed it means that for every x ∈ S1 there are elements for which there
exist arbitrarily large intervals of fixed points containing x (they contain the
complement of arbitrarily small neighbourhoods of x). Notice that to ob-
tain the conclusion, and in view of Lemma 1 it is enough to find, for a given
n > 0, elements γ1, . . . , γn ∈ Γ so that their fixed point sets are different
and pairwise cover S1. This is possible under this assumption.

Otherwise, one can construct h and discuss similarly than in the proof of
Theorem 1. We first recall that ρ(h) must be rational. In this case one can
argue as in the last paragraph to obtain such abelian groups. This completes
the sketch of the proof. �
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