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Abstract
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1 Introduction

A stationary random graph is a random rooted graph whose distribution is invariant under
re-rooting by a simple random walk. This notion was made explicit by Benjamini and Curien
in [BC12] motivated by several examples, including the Uniform Infinite Planar Triangula-
tion/Quadrangulation (UIPT/Q), and previously defined notions such as unimodular random
graphs.

In said work they develop the basic entropy theory for stationary random graphs, analo-
gous to the well known theory for random walks on finitely generated groups, see [KV83]. In
particular, they define an entropy and prove that if it is zero then the random graph almost
surely satisfies the Liouville property (i.e. bounded harmonic functions are constant). The con-
verse implication, that positive entropy implies the existence of non-constant bounded harmonic
functions, was posed as a question, see [BC12, Remark 3.7].

In this work we answer this question in the afirmative under an additional condition on the
stationary random graph. The hypothesis is the following (see Lemma 5.1):

The expectation of the number of elements of the ball of radius n
has finite exponential growth.

(1)

Our main result is the following (see Theorem 6.2).

Main Theorem. An ergodic stationary random graph satisfying condition (1) above, has zero
entropy if and only if it satisfies the Liouville property almost surely. Furthermore, if such a
graph has positive entropy, then almost surely it admits an infinite dimensional space of bounded
harmonic functions.
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Recent work of Benjamini, Paquette, and Pfeffer implies that the space of bounded harmonic
functions on a stationary random graph must be either infinite or one dimensional (see [BPP14]).
This yields an alternate proof of the second part of the above theorem (using the first part).

From the direct implication, which was already proved in their paper, Benjamini and Curien
proved that the Uniform Infinite Planar Quadrangulation almost surely satisfies the Liouville
property. With the extension given by our result above, it is possible to deduce that certain
stationary random graphs admit many bounded harmonic functions. We will discuss in Section
7 a few such examples, like the κ-Markovian infinite planar triangulations, introduced recently
by Curien in [Cur14], and the Hyperbolic Poisson-Delaunay graph.

An important difficulty in applying the above theorem is the lack of general criteria for
establishing that a stationary random graph has at most exponential volume growth, even when
the distribution of the degree of the root is known to be well behaved. In most cases where
the growth of a stationary graph is known (e.g. the Uniform Infinite Planar Quadrangulation,
or the Hyperbolic Poisson-Delaunay graph) it seems to have been established by ad-hoc, and
some times very intricate, arguments. Thus, the authors consider the following question to be
important:

Question 1.1. Given a stationary random graph such that the degree of the root is well behaved.
Under what conditions can one deduce that the graph has at most exponential volume growth?

To the best of the author’s knowledge there is no widely applicable answer to the above
question available in the literature. We discuss two relevant partial results in Section 7.2.
First, we give an example, due to Asaf Nachmias, of a stationary random graph with super-
exponential growth such that the degree of the root has finite mean, and in fact is comparable
to a Poisson variable. The example also has the special property that the degree of the root
determines the entire graph up to rooted isomorphism. Second, we prove that for unimodular
graphs whose root has finite expectation, if the number of elements at distance n from the
root is asymptotically independent from the degree of the root, then the graph has at most
exponential growth (see Lemma 7.4).

Our proof of the Main Theorem involves Derriennic’s zero-two law, a sharp criterion for
equivalence of the tail and invariant events of a Markov chain (see Corollary 3.2), and a “loop-
ing” argument which allows us to avoid parity problems (see Figure 1). In order to show that
our results are valid for graphs with unbounded degree, we improve the inequalities between
the linear drift and entropy from [BC12, Proposition 3.6] with essentially the same proof (see
Lemma 5.1). To show that positive entropy implies that the space of bounded harmonic func-
tions is infinite dimensional, we relate the dimension of this space to the mutual information
between the first m steps of a random walk and its tail behavior (see Lemma 4.1).

This occupies the first few sections of the paper. In section 7 we discuss examples and
applications of the main theorem to several examples, many of which were already known.

2 Tail and invariant events

In this section we introduce the terminology and notation to be used in the rest of the article.
Throughout this article we use the word “graph” as a synonym for connected locally finite (i.e.
each vertex has finite degree) undirected graph. If X is a graph, we denote by V (X) the set of
vertices of X and by E(X) the set of edges. We allow multiple edges and loops.
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Consider for any graph X, the path space Ω whose elements are sequences ω = (x0, x1, . . .)
of vertices with the property that xn is a neighbor of xn+1 for all n ≥ 0. The space Ω when
endowed with the topology of coordinate-wise convergence is a Polish space. We define the one
step transition probability p(x, y) between two vertices x, y ∈ V (X) by

p(x, y) =
number of edges connecting x to y

deg(x)
,

where edges connecting x to x are only counted once in the denominator. The n-th step
transition probability pn(x, y) is defined by

pn(x, y) =
∑

x1,...,xn−1

p(x, x1)p(x1, x2) · · · p(xn−1, y).

For each x ∈ V (X), the distribution of the simple random walk starting at x is the unique
Borel probability Px on Ω which satisfies

Px(x0 = x, x1 = a1, . . . , xn = an) = p(x, a1)p(a1, a2) · · · p(an−1, an)

for all sequences a1, . . . , an ∈ V (X). A simple random walk on X is a V (X) valued random
process xn, indexed on n = 0, 1, . . ., whose distribution is of the form∑

x∈V (X)

µ(x)Px,

where the initial distribution of the walk µ is a probability on X.
For each n, let Fn be the σ-algebra on Ω generated by xn, xn+1, . . .. The tail σ algebra F∞

is defined by

F∞ =
⋂
n

Fn,

while the invariant σ-algebra is defined by

F inv = {A ∈ F∞ : if ω = (x0, x1, . . .) ∈ A then ω′ = (x1, x2, . . .) ∈ A}.

Suppose xn is a simple random walk on X whose distribution we denote by P. We say that the
tail and invariant σ-algebras are equivalent with respect to xn if for each A ∈ F∞, there exists
B ∈ F inv such that P(A4B) = 0, where 4 denotes symmetric difference.

Remark. Consider a graph consisting of a single edge which joins two distinct vertices x and
y. This is a simple example where F∞ and F inv are not equivalent. All invariant events are
trivial. However, the tail event of being at x for all large enough even times is not invariant
and has intermediate probability if the initial distribution gives positive mass to both vertices.

3 The zero-two law

In this section we discuss the criterion for equivalence of tail and invariant events proved by
Derriennic. For this purpose, define for each vertex x in a graph X, the quantities

αn(X,x) =
∑

y∈V (X)

|pn+1(x, y)− pn(x, y)|,
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and let
α∞(X,x) = lim

n→+∞
αn(X,x).

We restate [Der76, Théorème 3] in our context.

Theorem 3.1 (Derriennic). Let X be a graph. For each x ∈ V (X), the limit α∞(X,x) exists
and one has

sup
x∈X

α∞(X,x) = 0 or 2.

Furthermore, the above supremum is 0 if and only if F∞ and F inv are equivalent for all simple
random walks on X.

We will need the following consequence of Derrienic’s result.

Corollary 3.2. If X is a graph such that p(x, x) ≥ 1/2 for all x ∈ V (X), then F∞ and F inv

are equivalent for every simple random walk on X.

Proof. For each x ∈ V (X), we calculate

αn(X,x) =
∑
y

|pn+1(x, y)− pn(x, y)|=
∑
y

|
∑
z

pn−1(x, z)(p2(z, y)− p(z, y))|

≤
∑
z

pn−1(x, z)
∑
y

|p2(z, y)− p(z, y)|=
∑
z

pn−1(x, z)α1(X, z).

On the other hand one has p2(z, z) ≥ 1/4 and p(z, z) ≥ 1/2, so in particular

α1(X, z) ≤ 2− 1/4,

for all z ∈ Z.

This implies α∞(X,x) ≤ 2 − 1/4 for all x ∈ V (X), so by Theorem 3.1, the tail and invariant
σ-algebras are equivalent for all simple random walks on X, as claimed.

4 Mutual information

The mutual information between two random variables is a non-negative (possibly infinite)
number which quantifies the dependence relationship between them. In particular, the mutual
information is zero if and only if the variables are independent, and is maximized when both
variables coincide.

In this section we consider the mutual information between the first m steps of a simple
random walk and all steps after time n, as well as the mutual information between the first
m steps and the tail behavior of the simple random walk on a graph X. We review the basic
properties relating these quantities to the space of bounded harmonic functions on the graph
(see in particular [Bla55],[Der85], and [Kai92]). This will be useful later in our study of entropy
of stationary random graphs.

Fix a graph X, a root vertex x ∈ V (X), and recall that Ω denotes the space of paths
(x0, x1, . . .) in X. Denote by Fn the σ-algebra generated by (x0, . . . , xn) for each n.
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Let P̂x be the distribution of two identical copies of a simple random walk starting at x in
X, while Px×Px denotes the distribution of two independent random walks starting at x. Note
that both probabilities are defined on Ω×Ω but the former is supported on the diagonal, while
the later is not (save trivial examples).

Let ϕ be the convex function given by ϕ(t) = t log(t). For m < n ≤ ∞, the mutual
information between Fm and Fn is defined by

Inm(X,x) = sup

{∑
i

ϕ

(
P̂x(Ai)

(Px × Px)(Ai)

)
(Px × Px)(Ai)

}
,

where the supremum is over all finite partitions of Ω×Ω whose sets Ai belong to σ(Fm×Fn). It
follows from the convexitiy of ϕ, that Inm(X,x) is always defined and non-negative, and equals

zero if and only if P̂x and Px × Px coincide on σ(Fm ×Fn).
Recall that a function f : V (X)→ R is said to be harmonic if

f(y) =
∑

z∈V (X)

p(y, z)f(z)

for all y ∈ V (X). A graph is said to satisfy the Liouville property if and only if all its bounded
harmonic functions are constant. The following result shows that, under mild hypothesis, the
mutual information I∞m (X,x) is directly related to the dimension of the space of bounded
harmonic functions on the graph X.

Lemma 4.1. Let (X,x) be a rooted graph such that F inv and F∞ are equivalent for the simple
random walk starting at x. Then X satisfies the Liouville property if and only if I∞m (X,x) = 0
for all m. Furthermore, if the space of bounded harmonic functions on X is finite dimensional
and of dimension d, then I∞m (X,x) ≤ log(d) for all m.

Proof. By [Bla55, Theorem 2], the bounded harmonic functions on X are in bijection with
bounded shift invariant measurable functions on the space of paths Ω considered modulo mod-
ifications on Px-null sets. Since F inv and F∞ are equivalent, this implies that X satisfies the
Liouville property if and only if F∞ is trivial.

If F∞ is trivial, then Fm is independent from F∞ for each m, so I∞m (X,x) = 0 as claimed. In
the other direction, if I∞m (X,x) = 0 for all m, then Fm and F∞ are independent. Since one
can approximate any tail event by events in Fm (for m large), we obtain that each tail event is
independent from itself. This implies that F∞ is trivial as claimed.

Suppose now that the space of bounded harmonic functions on X has dimension d. By Black-
well’s result above, there is a partition B1, . . . , Bd of Ω into disjoint tail events which are atoms
in F∞. By Dobrushin’s Theorem (see [Gra11, Lemma 7.3]), one may calculate I∞m as the supre-
mum over all partitions of σ(Fm ×F∞) of the form Ai ×Bj , where A1, . . . , An ∈ Fm. For any
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such partition, one has∑
i,j

ϕ

(
Px(Ai ∩Bj)
Px(Ai)Px(Bj)

)
Px(Ai)Px(Bj)

= −
d∑
j=1

Px(Bj) log (Bj) +
∑
i,j

ϕ

(
Px(Ai ∩Bj)

Px(Ai)

)
Px(Ai)

≤ log(d) +

n∑
i=1

log

 d∑
j=1

Px(Ai ∩Bj)2

Px(Ai)2

Px(Ai)

≤ log(d),

where we use Jensen’s inequality and the fact that
∑
j p

2
j < 1 if

∑
j pj = 1 (in our case

pj = Px(Ai ∩Bj)/Px(Ai)).

By taking supremum, one obtains I∞m (X,x) ≤ log(d) as claimed.

The following Lemma gives a concrete formula for the mutual information Inm(X,x) in terms
of the transition probabilities of the random walk. It will be used later on when we consider
the asymptotic entropy of random walks on stationary random graphs.

Lemma 4.2. Let (X,x) be a rooted graph. Then the following holds:

1. For each finite m < n, one has

Inm(X,x) =
∑

y,z∈V (X)

log

(
pn−m(y, z)

pn(x, z)

)
pm(x, y)pn−m(y, z).

2. For each m, the function n 7→ Inm(X,x) is non-increasing and converges to I∞m (X,x) when
n→ +∞.

Proof. By Dobrushin’s Theorem (see [Gra11, Lemma 7.3]), one may take the supremum in the
definition of Inm(X,x) over partitions in a generating set of σ(Fm ×Fn). The subsets of Ω×Ω
consisting of pairs of paths ((xi), (yi)) satisfying x0 = a1, . . . , xm = am, yn = an, . . . , yN = aN
for fixed ai and N > n, generate the necessary σ-algebra, and hence, we may take the supremum
over partitions into sets of this form.

For any fixed N > n > m, consider the partition {Aj} into sets as above, where a1, . . . , am,
an, . . . , aN range over all of V (X). Because of the Markov property one obtains the same result
for all N in the following calculation

∑
j

ϕ

(
P̂x(Aj)

(Px × Px)(Aj)

)
(Px × Px)(Aj) =

∑
an,am

log

(
pn−m(am, an)

pn(x, an)

)
pm(x, am)pn−m(am, an).

This implies the first claim by taking supremum. Since Inm(X,x) is calculated as a supremum
over a set of partitions which decreases with n, n 7→ Inm(X,x) is non-increasing, and the limit

L = lim
n→+∞

Inm(X,x)
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exists. It is no smaller than I∞m (X,x). Notice that the formula for Inm(X,x) implies that
Im+1
m (X,x) is finite, and hence so is L.

To simplify notation, fix m and set Gm = σ(Fm × Fn) for each m < n ≤ ∞. By the Gelfand-
Yaglom-Perez Theorem ([Pin64, Theorem 2.4.2] or [Gra11, Lemma 7.4]), one has

Inm(X,x) =

∫
Ω×Ω

ϕ(fn)d(Px × Px),

for all n (including n = ∞) where fn is the Radon-Nikodym derivative of P̂x restricted to Gn
relative to Px × Px restricted to the same σ-algebra.

By the reverse martingale convergence theorem (see [Doo01, pg. 483]), one has that fn → f∞
pointwise when n → +∞. Hence, ϕ(fn) converges to ϕ(f∞) and it suffices to show that these
functions are uniformly integrable to establish that lim Inm(X,x) = I∞m (X,x).

Since fn = E(fm|Gn), and the conditional expectation is relative to Px × Px, one obtains by
Jensen’s inequality that

e−1 ≤ ϕ(fn) = ϕ(E(fm|Gn)) ≤ E(ϕ(fm)|Gn)),

for all finite n. By the reverse martingale convergence theorem, the right-hand side converges
in L1 to E(ϕ(fm)|G∞)), and therefore, the family ϕ(fn) is uniformly integrable as claimed. It
follows that lim

n→+∞
Inm(X,x) = I∞m (X,x) which concludes the proof.

5 Linear drift and entropy of random graphs

Consider the topological space whose points represent all isomorphism classes of rooted graphs.
A sequence of rooted graphs in this space converges if and only if the isomorphism type of the
ball of each fixed radius around the root is eventually constant. The resulting space is separable
and its topology comes from a complete metric.

Furthermore, one can construct a larger space consisting of rooted graphs with a path
starting at the root. Given a random graph (X,x), one can find a random element of the space
of graphs with paths (X,x, (x0, x1, . . .)) such that the conditional distribution of (x0, x1, . . .)
given (X,x) is that of a simple random walk on (X,x) starting at x. We call (X,x, (x0, x1, . . .))
a simple random walk on (X,x). Sometimes we omit (X,x) and just write xn.

A random graph (X,x) is called stationary if it has the same distribution as (X,x1) where
xn is a simple random walk on (X,x). A stationary random graph is ergodic if the distribution
of the simple random walk on it is an ergodic invariant measure for the shift transformation

(X,x, (x0, x1, x2, . . .)) 7→ (X,x1, (x1, x2, . . .)).

Let xn be the simple random walk on an ergodic stationary random graph (X,x). By Kingman’s
subadditive ergodic theorem, the limit

`(X,x) = lim
n→+∞

d(x0, xn)

n
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exists almost surely and in mean. Here d(x0, xn) denotes the graph distance on the graph (X,x)
between x0 and xn. We call `(X,x) the linear drift of the simple random walk on (X,x). One
obtains trivially that 0 ≤ `(X,x) ≤ 1.

Another important quantity associated to the random walk xn is its entropy. It is defined
as the limit

h(X,x) = lim
n→+∞

− log(pn(x0, xn))

which exists almost surely and in L1 (again by Kingman’s theorem) under the condition

−E(log(p(x0, x1)) ≤ E(log(deg(x))) < +∞.

Under a mild assumption on the growth of the random graph one can conclude that h(X,x) = 0
if and only if `(X,x) = 0. The following proof is almost the same as that of [BC12, Proposition
3.6], which itself follows closely preceding results, see the references preceding [LP14b, Theorem
13.31]. In the following statement, |Br(x)| denotes the number of elements in the set of vertices
at distance r or less from x.

Lemma 5.1. Let (X,x) be an ergodic stationary random graph satisfying the following assump-
tion

v(X,x) = lim inf
r→+∞

r−1E (log |Br(x)|) < +∞. (1)

Then h(X,x) is finite and satisfies the following inequalities

1

2
`(X,x)2 ≤ h(X,x) ≤ `(X,x)v(X,x).

Proof. By the Carne-Varopoulos inequalities, one obtains

pr(x0, xr) ≤ 2

(
deg(xr)

deg(x0)

) 1
2

e−
d(x0,xr)2

2r , for all r.

The lower bound follows by taking − log and limit. Notice that E(log deg(x)) < +∞ by as-
sumption (1), and therefore deg(xr)/r → 0 almost surely by Birkhoff’s theorem.

For the upper bound, we use the observation that the function

(p1, . . . , pr) 7→
∑

pi log(1/pi)

is maximized over all p1, . . . , pr ≥ 0, with p1 + · · · + pr = 1, when all the pi are equal to 1/r.
This yields (see also the proof of [BC12, Proposition 3.6]) that

−
∑
y

pr(x, y) log(pr(x, y)) ≤ (1− pr) log
∣∣B(`+ε)r(x)

∣∣+ pr log |Br(x)| ,

for all ε > 0. Here ` = `(X,x), and pr = P(d(x0, xr) ≥ (` + ε)r) goes to 0 when r → +∞.
Dividing by r, taking expectation, inferior limit (at this point we use assumption (1)), and then
letting ε go to zero, yields the desired upper bound for h(X,x).
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6 Bounded harmonic functions and entropy of random
graphs

It was shown in [BC12, Theorem 3.2] that h(X,x) = 0 if and only if almost surely F∞ is trivial
for the simple random walk starting at the root of (X,x). It follows that if h(X,x) = 0, then
X almost surely satisfies the Liouville property. The question of whether the converse always
holds was posed in the same paper, see [BC12, Remark 3.7]. We will settle this question under
mild additional hypothesis.

We will show that if (X,x) is an ergodic stationary random graph with positive entropy,
then almost surely the space of bounded harmonic functions on X is infinite dimensional. In
particular, the graph obtained by taking the disjoint union of two copies of Cayley graph of
Z3 and adding an edge joining them cannot occur with positive probability for any stationary
random graph since its space of bounded harmonic functions has dimension 2. Also, any graph
with transitive isomorphism group must either satisfy the Liouville property or have an infinite
dimensional space of bounded harmonic functions.

To begin we express the entropy h(X,x) of a stationary random graph as the average mutual
information between the first step and the tail of the corresponding simple random walk.

Lemma 6.1. Let (X,x) be an ergodic stationary random graph with finite entropy. Then for
each m, one has

h(X,x) = E
(

1

m
I∞m (X,x)

)
.

Proof. By Lemma 4.2, Inm(X,x) is non-increasing and converges to I∞m (X,x) when n → +∞.
Hence,

E(I∞m (X,x)) = lim
n→+∞

E(Inm(X,x)).

Using the formula from Lemma 4.2 and stationarity, one obtains

E(Inm(X,x)) = E

 ∑
y,z∈X

log

(
pn−m(y, z)

pn(x, z)

)
pm(x, y)pn−m(y, z)


= E

(
log

(
pn−m(xm, xn)

pn(x0, xn)

))
= −E (log (pn(x0, xn))) + E

(
log
(
pn−m(xm, xn)

))
= −E (log (pn(x0, xn))) + E

(
log
(
pn−m(x0, xn−m)

))
.

Letting Hn = −E(log(pn(x0, xn)), one has obtained that Hn − Hn−m converges monotonely.
Since 1

nHn converges to h(X,x), the limit must be mh(X,x) (take the telescoping sum over
n = km for k ∈ N). This concludes the proof.

We can now prove our main theorem.

Theorem 6.2. Let (X,x) be an ergodic stationary random graph satisfying the assumption (1)
of Lemma 5.1. Then h(X,x) = 0 if and only if almost surely X satisfies the Liouville property.
Furthermore, if h(X,x) > 0, then almost surely the space of bounded harmonic functions on X
is infinite dimensional.
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Proof. By Lemma 6.1, for each m, one has

h(X,x) = E
(

1

m
I∞m (X,x)

)
.

Hence, if h(X,x) = 0, then almost surely one has I∞m (X,x) = 0 for all n. By Lemma 4.1, this
implies that (X,x) satisfies the Liouville property almost surely as claimed.

Assume now that h(X,x) > 0. Notice that by Lemma 5.1, the linear drift of the random walk
on (X,x) is positive. We consider a stationary random graph (X ′, x) obtained from (X,x) by
adding deg(y) edges connecting each vertex y to itself (see Figure 1). The simple random walk
on this new random graph differs from the old one by a geometric waiting time with expectation
2. In particular, the linear drift of the simple random walk on (X ′, x) is also positive. By Lemma
5.1, this implies h(X ′, x) > 0.

Using Lemma 6.1 as above, one obtains

mh(X ′, x) = E(I∞m (X ′, x)),

so that
P (I∞m (X ′, x) ≥ mh(X ′, x)) > 0.

Notice that (X ′, x) almost surely satisfies the hypothesis of Lemma 3.2, so that F inv and F∞ are
equivalent. Therefore, we may apply Lemma 4.1 and obtain from the inequality above (choosing
m so that mh(X ′, x) > log(d)) that for each d, the probability that (X ′, x) admits more than
d linearly independent bounded harmonic functions is positive. Since the space of bounded
harmonic functions remains unchanged by adding deg(y) loops at each vertex, one obtains that
for each d, the probability that (X,x) admits at least d linearly independent bounded harmonic
functions is positive. Because (X,x) is ergodic, almost surely the space of bounded harmonic
functions on (X,x) is infinite dimensional. This concludes the proof.

Figure 1: The stationary distribution m(x) = deg(x)/
∑

deg(y) of a finite graph does not change
when one adds deg(x) loops at each vertex x. For general stationary random graphs this process
does not affect stationarity.
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7 Applications

7.1 Random bridges on a tree

As an application of Theorem 6.2 we will construct a stationary random graph whose random
walk has positive linear drift. It follows that almost surely the graph admits an infinite dimen-
sional space of bounded harmonic functions, a property which, to the best of our knowledge, is
not easily established by other means.

In the context of random walks on groups, a similar example, is given by the Cayley graph
of the lamplighter group on Z3. It is quite simple to establish that the random walk on this
group has positive linear drift but, a priori, non-constant harmonic functions are not so easy
to exhibit. However, all harmonic functions have recently been explicitely identified thanks to
the works of Erschler, Lyons and Peres (see [Ers11] and [LP14a]).

Our random graph is a simplified variant of the Stochastic Hyperbolic Infinite Quadrangu-
lation, see [Ben11, Section 6.3]. The difference is that we label edges with only +1 and −1
(never 0) and we join the vertex at a corner to the first corner such that the sum along edges
is 0 (instead of −1 as in the SHIQ, see Figure 2).

This last modification implies that our random graph is regular, while the SHIQ almost
surely has vertices with arbitrarily large degree. However, our graph is non-planar, and the
new edges connect points which are arbitrarly far away on the tree. In particular, the graph is
not quasi-isometric to the tree. Hence, even though our graph is transient, having the regular
tree as a subgraph [Lyo83], the existence of non-constant bounded harmonic functions does
not follow from [BS96]. In principle the graph might be almost planar, i.e. admit a quasi-
monomorphism onto a planar graph, we conjecture that this is not the case. We now give the
details of the construction.

To begin, take a regular degree three tree T0 with some fixed root x. We consider this graph
embedded in the plane without self crossings so that there is an order (say clockwise) among
the three edges sharing each vertex. We define a corner as the angular sector between two
consecutive edges. There is a partial order on the set of corners which is given by the clockwise
contour of the graph.

A graph (T, x) rooted at x is constructed as follows: A random label +1 or −1 is chosen
with probability 1/2 independently for each edge of T0. For each vertex y and each corner at
y, we add an edge joining y to the vertex z of the first corner in the partial order such that
the sum of labels along the shortest path from y to z is equal to 0. It follows that the random
graph (T, x) is almost surely regular with all vertices of degree 9. In particular, the assumption
(1) of Lemma 5.1 is trivially satisfied.

We first show that (T, x) is stationary. We do so by showing that it is unimodular, which is
equivalent to stationarity since (T, x) is regular (see below).

Recall that a random rooted graph (X,x) is said to be unimodular if for every function F ,
going from the space of isomorphism classes of graphs with two ordered roots to [0,+∞), one
has

E

 ∑
y∈V (X)

F (X,x, y)

 = E

 ∑
y∈V (X)

F (X, y, x)

 .

If a random rooted graph (X,x) defined on some probability space (Ω,F ,P) is unimodular and

11



E(deg(x)) < +∞, then X is stationary with respect to the probability measure Q defined by

dQ
dP

(X,x) =
deg(x)

EP(deg(x))
. (2)

See for example [BC12, Section 2.2]. Since P and Q are absolutely continuous, the almost sure
properties of (X,x) coincide with that of a stationary random graph.

Lemma 7.1. The random graph (T, x) just constructed is stationary.

Proof. Suppose L is a random labeling of the sides of the ternary tree. Given a vertex y in the
tree T0, let T (L, x, y) denote the isometry class, in the space of graphs with two ordered roots,
of the graph T obtained from the labeling L with two ordered roots at x and y respectively.

The claim is that for every function F , going from the space of isomorphism classes of graphs
with two ordered roots to [0,+∞), one has

E

 ∑
y∈V (T0)

F (T (L, x, y))

 = E

 ∑
y∈V (T0)

F (T (L, y, x))

 .

Notice that since the vertices of T are deterministic, it suffices to show that for each fixed
y one has

E (F (T (L, x, y))) = E (F (T (L, y, x))) . (3)

To see this, we assume that the underlying ternary tree T0 has been embedded into the
Hyperbolic plane in such a way that all edges have the same length and meet at each vertex
forming 120◦ angles.

Under this assumption the hyperbolic central symmetry with respect to the midpoint of
any edge leaves the graph invariant and hence uniquely determines an isomorphism of the tree.
Any such symmetry acts on a labeling L in the obvious way.

Assume now that y is a neighbor of x in the ternary tree and let σ be the hyperbolic central
symmetry with respect to the midpoint of the edge joining x to y. Notice that the graph
T (L, y, x) is isomorphic to T (σ∗L, x, y), where σ∗L is the labeling L rotated using σ. Since σ∗L
has the same distribution as L, this establishes (3) as claimed.

The general case follows by changing the labeling using the composition σ1 ◦ · · · ◦ σn, where
the σi are the central symmetries with respect to the midpoints of the edges in the shortest
path joining x to y.

We now verify that the simple random walk on (T, x) has positive linear drift.

Lemma 7.2. The simple random walk on (T, x) has positive linear drift.

Proof. Since T is regular with degree 9, has the same vertex set as the tree T0, and contains
T0 as a subgraph, then X satisfies the strong isoperimetric inequality with a deterministic
isoperimetric constant. Hence by [Vir00, Theorem 1.1] (see also [Ger88]) there exists a constant
ε > 0 such that

lim inf
n→+∞

d(x, xn)

n
≥ ε

almost surely.

12



Notice that the distribution of (T, x) has compact support. Hence it can be written as
the average of ergodic distributions by Choquet’s theorem. For almost all of these ergodic
distributions, it follows from the previous lemma that the linear drift of the random walk is
positive. Hence, by Theorem 6.2, almost every graph admits an infinite dimensional space of
bounded harmonic function. We conclude that the dimension of the space of bounded harmonic
functions on (T, x) is infinite dimensional almost surely, as claimed.

+1

+1

-1

-1

-1

+1

-1

+1

-1

Figure 2: The ball of radius two centered at x in a realization of the random graph (T, x).

7.2 Volume growth and Canopy Trees

The main limitation of Theorem 6.2 is that there is no general method to verify the growth
hypothesis needed on the graph. In fact, in this section we will show that there exist recur-
rent, and hence Liouville, stationary random graphs with super-exponential volume growth.
The example was communicated to the authors by Elliot Paquette who attributed it to Asaf
Nachmias.

Given a sequence of natural numbers a1, a2, . . . construct a tree as follows:

1. Begin with a single “level-1” vertex joined to a1 “level-0” vertices and call the resulting
tree T1.

2. Join a single (new) “level-2” vertex to the “level-1” vertices of a2 copies of T1 to obtain
the tree T2.

3. For each n ≥ 3 join a single “level-n” vertex to the “level-(n− 1)” vertices of an copies of
Tn−1 to obtain Tn.

We call the unrooted tree obtained as the union of all Tn the “Canopy tree” determined by
the sequence a1, a2, . . .. Notice that the isomorphism group of such a tree preserves and acts
transitively on the set of level-n vertices for each n.

In the case where the sequence an is constant and equal to 2, we obtain the Canopy tree
as defined by Aizenman and Warzen in [AW06]. One obtains a stationary random graph by
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rooting the graph randomly at a level-0 vertex with probability 1/4, and at a level-n vertex with
probability 3/2n+2 for each n ≥ 1. This is a nice example of a recurrent graph, in particular
Liouville, with exponential volume growth. The ball of radius 2n contains at least 2n and no
more than 32n+1 vertices.

On the other hand, if all an are equal to 1 one obtains a single vertex at each level and
there is no way of choosing a random root in a such a way that the resulting random graph is
stationary. The following lemma shows that in general one may construct a stationary graph
from a Canopy tree if the sequence an does not contain too many ones.

Lemma 7.3. The Canopy tree determined by a sequence a1, a2, . . . admits a random root such
that the resulting graph is stationary if and only if∑ 1

a1a2 · · · an
< +∞.

Proof. Consider the Markov chain on 0, 1, . . . with probability of going from 0 to 1 equal to 1,
probability 1/(ak + 1) of going from k to k + 1 for each k ≥ 1, and probability ak/(ak + 1) of
going from k to k − 1 for each k ≥ 1. There is a random root on the given Canopy tree such
that the resulting random graph is stationary if and only if there is a stationary probability for
the aforementioned Markov chain.

If the above series converges, then defining p0 = 1/S and pk = (ak + 1)/(Sa1 · · · ak) for each
k ≥ 1, where

S = 1 + (a1 + 1)/a1 + (a2 + 1)/(a1a2) + (a3 + 1)/(a1a2a3) + · · · ,

one obtains a stationary probability for the Markov chain.
For the converse direction, assume that there is a stationary probability for the chain. Then

the expected value mk of the hitting time at 0 for the chain started at k is finite and non-negative
for all k ≥ 1. The mk satisfy the recurrence relation

mk = akmk−1/(ak + 1) +mk+1/(ak + 1) + 1,

or equivalently
mk+1 −mk = ak(mk −mk−1)− (ak + 1).

Setting ∆k = mk+1 −mk, one obtains, using the general solution for a first order linear recur-
rence, that

∆n =

(
n−1∏
k=1

ak

)(
∆1 −

n−1∑
k=1

(ak + 1)/(a1 · · · ak)

)
.

Since mk ≥ 0 for all k, one must have that the finite sum in the formula for ∆k is bounded
by ∆1 (which must be positive) for all n. In particular, one obtains

∑
1/(a1 · · · an) < +∞ as

claimed.

The Canopy tree determined by the sequence an = n satisfies the hypothesis of the above
lemma, and therefore can be turned in to a stationary random graph by adding the appropriate
random root. One can verify that the ball of radius 2n centered at any vertex of the tree
contains at least n! vertices and therefore the graph has super-exponential volume growth. On
the other hand, the graph is recurrent and therefore Liouville.
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In the previous example the degree of the root is k + 1 with probability (k + 1)e−1/k! for
each k, and has finite expectation. This example is also interesting in that the degree of the
root determines the isomorphism class of the graph completely. In particular, the degree of the
root and the number of elements at distance r are highly dependent random variables even for
large r. We will now show that in a unimodular graph where the degree of the root is well
behaved and the number of elements of the sphere of radius r is “reasonably independent” from
the degree of the root, one can prove that there is finite exponential growth.

Lemma 7.4. Let (X,x) be a unimodular random graph such that E(deg(x)) < +∞ and there
exists a constant C such that

E (deg(x)|Sr(x)|) ≤ C E(|Sr(x)|) (4)

for all r, where |Sr(y)| denotes the number of elements at distance r from the vertex y of X.
Then v(X,x) < +∞.

Proof. Let Br(y) be the graph ball of radius r centered at y ∈ V (X) and Sr(y) be the respective
sphere. By the triangle inequality

|Br+1(x)| ≤ |Br(x)|+
∑

y∈Sr(x)

deg(y) = |Br(x)|+
∑

y∈V (X)

1d(x,y)=r deg(y).

Consider the function
F (X,x, y) = 1d(x,y)=r deg(y).

Then

E

 ∑
y∈V (X)

1d(x,y)=r deg(y)

 = E

 ∑
y∈V (X)

F (X,x, y)

 = E

 ∑
y∈V (X)

F (X, y, x)


= E

 ∑
y∈V (X)

1d(x,y)=r deg(x)

 = E [deg(x)|Sr(x)|]

≤ C E|Sr(x)|,

by our assumption. Therefore

E |Br+1(x)| ≤ E |Br(x)|+ CE|Sr(x)|≤ (1 + C)E|Br(x)|.

This implies that v(X,x) ≤ 1+C. Recall that (X,x) is stationary with respect to the probability
measure Q defined in (2). Notice that condition (4) then implies that vQ(X,x) (i.e. the volume
growth relative to the probability measure Q) is also finite.

7.3 Augmented Galton-Watson Tree

We will now illustrate how Theorem 6.2 implies a known result about harmonic functions on
Galton-Watson trees.

Consider two independent Galton-Watson trees T1 and T2 with the same offspring distribu-
tion {pk : k ≥ 0}. That is, pk is the probability that a vertex has k children. We assume that
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p0 = 0 and the offspring distribution has finite mean and variance. The Augmented Galton-
Watson tree is constructed by joining the roots of T1 and T2 with a single edge and rooting the
resulting graph at the root of T1.

It has been shown in [LPP95] that under the above conditions the Augmented Galton-
Watson is a stationary random graph and that the simple random walk on it escapes with
positive speed given by

` =
∑
k

pk(k − 1)/(k + 1).

Since the offspring distribution has finite mean and variance, the resulting random graph
has finite exponential volume growth. See for example [LP14b, Chapter 12]. Hence one may
apply Theorem 6.2 to obtain that almost surely the Augmented Galton-Watson tree admits an
infinite dimensional space of bounded harmonic functions.

7.4 Hyperbolic κ-Markovian triangulations

In a recent work [Cur14] N. Curien has introduced a one parameter family of random infinite
triangulations of the plane which generalize the Uniform Infinite Planar Triangulation (UIPT)
[AS03]. These are called κ-Markovian planar triangulations where the parameter κ ∈ (0, κ0].
The critical parameter κ0 = 2/27 corresponds to the UIPT, while for κ < κ0 the triangulations
are hyperbolic in flavor.

It is shown in [Cur14], that in the hyperbolic regime (κ < κ0) these triangulations are
almost surely non-Liouville, have anchored expansion and positive linear drift. The proof of
the non-Liouville property relies on the planarity of the triangulations and the fact that almost
surely they do not possess the intersection property. In this section, we apply Theorem 6.2
to provide an alternative proof of the non-Liouville property, and in fact that (when κ < κ0)
the κ-Markovian triangulation almost surely admits an infinite dimensional space of bounded
harmonic functions.

We fix κ ∈ (0, κ0) for the rest of this section. The κ-Markovian infinite planar triangulation
T is a random rooted type II triangulation of the plane. We refer the reader to [AS03, Section
1.2] for the precise definitions. It is defined by the following property: there exists a sequence
{Cp}p≥2 of positive numbers, which depends on κ, such that if τ is a finite rooted triangulation
of the p-gon, then

P(τ ⊂ T ) = Cpκ
|τ |,

where |τ | is the number of vertices of τ . Here τ ⊂ T means that T is obtained from τ with
coinciding roots, by filling its hole with a necessary unique infinite triangulation of the p-gon.
By [Cur14, Section 3.1] T is stationary and ergodic.

Theorem 7.5. Let κ ∈ (0, κ0). The κ-Markovian triangulation T almost surely admits an
infinite dimensional space of bounded harmonic functions.

For any r ≥ 1, let Br(o) denote the sub-triangulation of T consisting of all the triangles
which are incident to a vertex at distance less than or equal to r− 1 from the root. Notice that
since T is one-ended, the complement of Br(o) has only one infinite connected component. Let
Br(o) be the hull of Br(o) obtained by filling-in all the finite components of its complement.
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By [Cur14, Theorem 2], the exponential rate growth of Br(o) is known: there exists a constant
λ > 1 and a random variable V ∈ (0,+∞), which depend only on κ, such that

λ−r
∣∣Br(o)∣∣ a.s.−→

r→+∞
V.

In order to apply Theorem 6.2, we need to control the expected number of elements of the balls.

Lemma 7.6. There exists a constant C, which depends only on κ, such that

E (|Br(o)|) ≤ Cr

for all r ∈ N.

The proof is based on an algorithmic device, called the peeling process, that allows to
construct T as a sequence of growing finite triangulations {Tn}n≥0, see [Ang03]. The process
starts by declaring T0 to be one of the triangles that are incident to the root of T . At each step,
Tn is a finite triangulation whose boundary ∂Tn consists of a simple closed curve. Suppose Tn
is constructed, and enumerate the boundary vertices ∂Tn = {x1, . . . , xp}, where p = |∂Tn| is
the perimeter of Tn.

There is a triangle in T \Tn incident to the edge {x1, xp}. If we call the third vertex of this
triangle y, there are two possibilities for the location of y: either y is a new vertex, or y = xi
for some i ∈ {2, . . . , p− 1}. The probabilities of these events are given by

P (y /∈ ∂Tn) =
κCp+1

Cp
, P (y = xi) =

Cp−i+1Zi
Cp

.

Here Zi is the partition function associated to the Boltzmann distribution on triangulations of
the i-gon: if we denote by Ti the set of all finite triangulations of the i-gon, then

Zi =
∑
τ∈Ti

κ|τ |−i,

and for any τ ∈ Ti, the probability of τ is given by κ|τ |−i/Zi. An explicit formula for Zi is
known, see for example [Ray14, Section 3.3], but we will not need it here. To complete the
construction of Tn+1, one fills the hole created in the case when y = xi with a independent
Boltzmann triangulation τ of the i-gon.

This process depends on the choice of an edge to peel at each step. One way to chose the
edge to peel is given by the “peeling by layers” algorithm: at step n, peel the right-most edge
of ∂Tn which belongs to the triangle just revealed. Using this algorithm, every vertex of ∂Tn
will be eventually in the interior of Tm for some big enough m ≥ n, and so T =

⋃
n≥0 Tn.

We are interested in the Markov chain

(Pn, Vn) = (|∂Tn|, |Tn|) , n ≥ 0.

We will use the notation ∆Xn = Xn+1 − Xn for the increments of a sequence of random
variables. The distribution of the increment ∆Pn is given by

P (∆Pn = 1|Pn = p) =
κCp+1

Cp
, and P (∆Pn = −i|Pn = p) = 2

Cp−iZi+1

Cp
,
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where the factor of 2 is because there are two ways of attaching a triangle to Tn with vertices
x1, xp and xi+1. When p is large, these probabilities converge to a limit distribution. In fact,
by [Cur14, Lemma 4], if we let α ∈ (2/3, 1) be given by 2κ = α2(1−α), then the following limit
exists

lim
p→+∞

βpCp = cα ∈ (0,+∞),

where β = κ/α. The limit distribution is therefore given by

q1 = α and q−i = 2βiZi+1 for i ≥ 1.

Consider (Xn)n≥0 a random walk on the integers, started at 2, with independent increments
following the distribution {q1, q−i i ≥ 1}. In [Ray14, Lema 4.2] it is shown that this random
walk has positive drift given by the expected value of the increments.

Conditionally on (Xn)n≥0, define (Yn)n≥0 so that ∆Yn are independent and distributed
as the number of internal vertices of a Boltzmann triangulation of the (−∆Xn + 1)-gon (if
∆Xn = 1, let ∆Yn = 1 by convention). More precisely, the distribution of ∆Yn is given by

P(∆Yn = k) =

q1 +
∑
i≥1 q−i

∣∣∣T (1)
i+1

∣∣∣ κ
Zi+1

, if k = 1∑
i≥1 q−i

∣∣∣T (k)
i+1

∣∣∣ κk

Zi+1
, if k ≥ 2,

where T (k)
i+1 denotes the set of all triangulations of the (i+ 1)-gon with k internal vertices. The

exact value of |Ti+1| is known, see for example [AS03, Theroem 2.1], but we will not use it here.
In the proof of Lemma 7.6 we will need the following fact which is a consequence of moderate

deviations estimates. From now on if f and g are non-negative real valued functions defined on
a set A, we will write f . g if there exists a constant C, such that f(a) ≤ Cg(a) for all a ∈ A.

Lemma 7.7. Let (ξn)n≥1 be a sequence of independent identically distributed random variables,
such that E

(
et|ξ1|

)
< ∞ for some t > 0. Denote by µ = E(ξ1), and let τ ∈ N be any random

variable. Then, for all ε > 0, there exists a constant C such that

E

∣∣∣∣∣
τ∑
i=1

ξi − τµ

∣∣∣∣∣ ≤ C E(τ1/2+ε).

Proof. From [LG05, Lemma 1.12], for any ε > 0 we have P (An) ≤ C1e
−n1/2+ε

for all n ≥ 1,
where

An =

{∣∣∣∣∣
n∑
i=1

ξi − nµ

∣∣∣∣∣ > n1/2+ε

}
.

Here, the multiplicative constant depends on ε. Consider η(ω) = max{n : ω ∈ An}. By
Borel-Cantelli’s lemma, η is finite almost surely, and in fact

P (η ≥ k) = P

⋃
n≥k

An

 .
∑
n≥k

e−n
1/2+ε

. k1/2+εe−k
1/2+ε

, (5)

18



We first compute the expectation on the event {τ = n}:

E

(∣∣∣∣∣
τ∑
i=1

ξi − τµ

∣∣∣∣∣1{τ=n}

)
=
∑
k≥0

E

(∣∣∣∣∣
n∑
i=1

ξi − nµ

∣∣∣∣∣1{τ=n}1{η=k}

)

≤ n1/2+εP (τ = n) +
∑
k≥n

E

(∣∣∣∣∣
n∑
i=1

ξi − nµ

∣∣∣∣∣1{τ=n}1{η=k}

)

By the Cauchy-Schwarz inequality, the second term in the right-hand side of the last inequality
is bounded from above by

n1/2Var(ξ1)1/2
∑
k≥n

P (τ = n, η = k)
1/2 . n1/2

∑
k≥n

k1/2+εe−k
1/2+ε

1/2

,

where the las inequality follows from (5). Bounding from above the last sum, we finally obtain
the estimate

E

(∣∣∣∣∣
τ∑
i=1

ξi − τµ

∣∣∣∣∣1{τ=n}

)
≤ n1/2+εP (τ = n) + γn,

where γn is a summable sequence. Summing over all the possible values for τ we get the desired
inequality.

Proof of Lemma 7.6. For r ≥ 1, let τr be the first time when all the vertices of ∂Tn are at
distance at least r from the root. Then Br(o) = Tτr , and in particular Vτr =

∣∣Br(o)∣∣. Notice
that the increments ∆Pn are bounded from above by 1, so for all r we have Pτr ≤ τr. First we
need the following estimate which is proved in [Ang03, Lemma 4.2]:

∃ a, b > 0 such that P (∆τr ≥ k|Pτr = p) ≤ e−bk for all p and k > ap.

From this it follows that for all p:

E (∆τr|Pτr = p) ≤
ap∑
k=0

kP (∆τr = k|Pτr = p) +
∑
k>ap

ke−bk ≤ ap+
∑
k>ap

ke−bk,

which implies
E (∆τr) . E (Pτr ) . E (τr) .

We have shown that there exists a constant C so that E (τr) ≤ Cr for all r ≥ 1.
The key point in what follows is that (Pn, Vn) is equal in distribution to (Xn, Yn) conditioned

on the event {Xi ≥ 2,∀i ≥ 0} which has positive probability, see [Cur14, Section 2]. Denote by
γ > 0 the probability of this event, then E (Vτr ) ≤ γ−1E(Yτr ).

We first show that the distribution of the increments ∆Yn have an exponential tail. Let
k ≥ 2, then

P (∆Yn = k) = κk
∑
i≥1

βi
∣∣∣T (k)
i+1

∣∣∣ .
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Notice that β is a monotone function of κ, so if we take κ < κ′ < κ0, the corresponding β′

satisfies β < β′ < β0 = 1/9. Therefore

P (∆Yn = k) = κk
∑
i≥1

βi
∣∣∣T (k)
i+1

∣∣∣ ≤ ( κ
κ′

)k (κ′)k
∑
i≥1

(β′)i
∣∣∣T (k)
i+1

∣∣∣
 ≤ ( κ

κ′

)k
.

In particular, we are in the hypotheses of Lemma 7.7. Let µ = E (∆Y1), then for any ε > 0,
there exists a constant C such that

E (Yτr ) ≤ µE (τr) + C E
(
τ1/2+ε

)
.

Fix ε ∈ (0, 1/2), then by Jensen’s inequality we obtain E (Yτr ) . E(τr). This finishes the proof
of the lemma.

7.5 Poisson Delaunay random graphs

In this section we denote byM either the d-dimensional Euclidean space Rd, or the d-dimensional
hyperbolic space Hd. In the latter case, we use the Poincaré ball model where in polar coordi-
nates the metric is given by

ds2 = dr2 + sinh(r)2dθ2,

where dθ2 is the standard metric on the sphere Sd−1. In both cases we write dx for the volume
element on M .

Figure 3: An approximate Poisson-Delaunay triangulation
This is the Delaunay triangulation associated to a set of independent uniform points in
[−1, 1]2 ⊂ R2 and rooted at the origin. As the number of points increases the resulting random
graph approximates the Poisson-Delaunay random graph in distribution.
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Let Π be a homogeneous Poisson point process of intensity one on M . That is, Π is a
random discrete set of points on M with the following properties:

1. the number of points in any Borel set A is a Poisson random variable whose expected
value is the volume of A;

2. for any two disjoint Borel sets A and B, the corresponding Poisson random variables are
independent.

We refer to [Kin93] for an introduction to point processes. We chose the intensity to be one
only for simplicity, but the arguments given here go through for the general case of constant
intensity with out significant changes.

We set o = 0 ∈M , and consider the Delaunay graph associated to the discrete set

Πo = Π ∪ {o}.

That is, we consider the random rooted graph X with root o and vertex set Πo such that two
vertices x, y ∈ X are joined by a single undirected edge if, and only if, there exists a ball with
x and y on its boundary and whose interior contains no points of Πo. The resulting random
graph is almost surely the dual graph of a tessellation of M into simplices known as the Voronoi
tessellation. See Figure 3 for a realization in R2.

The main goal of this section is to prove the following

Theorem 7.8.

1. The Euclidean Poisson-Delaunay random graph is almost surely Liouville for all d.

2. The Hyperbolic Poisson-Delaunay random graph almost surely admits an infinite dimen-
sional space of bounded harmonic functions for d = 2.

We will first establish that the growth assumption (1) on Lemma 5.1 is satisfied. The main
tool we will use is Slivnyak’s formula, see [Møl94, Proposition 4.1.1.], which we will now restate
for the reader’s convenience.

Lemma 7.9 (Slivnyak’s formula). Let Π be a Poisson process on M with intensity 1. For every
measurable function f : M∗n × D → [0,+∞), where M∗n is the space of n-element subsets of
M and D is the space of discrete subsets of M , one has

E

 ∑
{x1,...,xn}⊂Π

f
(
{x1, . . . , xn},Π

)
=

1

n!

∫
Mn

E
[
f
(
{y1, . . . , yn},Π ∪ {y1, . . . , yn}

)]
d(y1, . . . , yn).

We will now prove that in the Euclidean case the Poisson-Delaunay graph grows sub-
exponentially.

Lemma 7.10. Let d ≥ 1, and X be the Poisson-Delaunay graph rooted at o = 0 ∈ Rd. For
each r ∈ N, we denote by Br(o) the ball of radius r centered at o in X. Then:
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1. Almost surely |Br(o)|= O(rd logd r) when r → +∞, and

2. E(deg(o)) < +∞ and EQ|Br(o)| = O(rd logd r) when r → +∞.

Recall that Q is the probability measure defined in (2). In particular, X has polynomial volume
growth and vQ(X, o) = 0.

Proof. We will prove 2. The first assertion follows from the proof by applying Borel-Cantelli’s
Lemma. Let Π be the Poisson point process in Rd with intensity 1, and define LΠ(x) to be the
Euclidean distance between x and its farthest neighbor in the Delaunay graph of Π ∪ {x}.

The proof relies on the following exponential bound for the tail of LΠ(x): there is a positive
constant c such that

P (LΠ(x) > s) . e−cs, (6)

for all s > 0. See for example [Møl94, OBS92].
Let us denote by BMr (o) the Euclidean ball of radius r centered at o. Let {sr}r≥0 be

a monotone sequence of non-negative numbers, with r0 = 0, to be chosen later and define
Sr = s1 + · · · sr−1. Applying (6), we will bound from above the probability that there exists an
edge in the Delaunay graph X, of Euclidean length at least sr, starting at a point of BMSr (o).

Recall that D denotes the space of discrete subsets of Rd, and consider the function f :
D × Rd → R given by

f(Z, z) = 1Z∩BMSr (o)(z)1{LZ(z)>sr}, Z ∈ D and z ∈ Rd.

By Slyvniak’s formula, we have

P
(
∃ x ∈ Πo ∩BMSr (o) : LΠo(x) > sr

)
≤ E

[∑
x∈Πo

f(Πo, x)

]

=

∫
Rd

E [f(Πo ∪ {y}, y)] dy

=

∫
BMSr (o)

P (LΠo(y) > sr) dy

≤
∫

BMSr (o)

P (LΠ(y) > sr) dy

. Sdr e
−csr ,

Notice that the same upper bound holds if we add more points to Π instead of adding just the
point o. Suppose now that {sr} is chosen so that

∞∑
k=1

∑
r≥k

Sdr e
−csr <∞.

Consider the sequence of events

Ar =
{
Z ∈ D : ∃ z ∈ Z ∩BMSr (o) s.t. LZ(z) > sr

}
,
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and define K(Z) = max{r : Z ∈ Ar}. Then {K ≥ k} =
⋃
r≥k Ar, and therefore

E(K) ≤
∞∑
k=1

∑
r≥k

P(Ar) .
∞∑
k=1

∑
r≥k

Sdr e
−csr <∞.

The event {K = k} is{
Z ∈ D : ∃ x ∈ Z ∩BMSk(o) with LZ(x) > sk and LZ(z) ≤ sr ∀z ∈ Z ∩BMSr (o) ∀r > k

}
.

Suppose that Πo satisfies K(Πo) = k. This implies that for any r ≥ k and any point x ∈
Πo \BSr−1

, the distance in the graph X between o and x is at least r − k. In other words, we
have

Br(o) ⊂ BMSr+K(Πo)
(o).

Decompose the second moment of |Br(o)| according to the values of K,

E|Br(o)|2 =

∞∑
k=1

E
[
|Br(o)|21{K(Πo)=k}

]
.

Then, we obtain the upper bound

E |Br(o)|2 ≤
∞∑
k=1

E
[∣∣∣Πo ∩BMSr+k(o)

∣∣∣2 1{K(Πo)=k}

]
.

Let g : D × Rd → R be the function

g(Z, z) = 1Z∩BMSr+k (o)(z)1{K(Z)=k}.

By Slyvniak’s formula again, we get

E
[ ∣∣∣Πo ∩BMSr+k(o)

∣∣∣2 1{K(Πo)=k}

]
= E

 ∑
x1,x2∈Πo

g(Πo, x1)g(Πo, x2)


=

∫
(Rd)2

E
[
g(Πo ∪ {y1, y2}, y1)g(Πo ∪ {y1, y2}, y2)

]
d(y1, y2)

=

∫
BMSr+k

(o)2

P
[
1{K(Πo∪{y1,y2})=k}

]
d(y1, y2)

. S2d
r+k

∑
m≥k

Sdme
−csm

The last inequality follows from

P(K(Πo ∪ {y1, y2}) ≥ k) .
∑
m≥k

Sdme
−csm .
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Therefore, we obtain

E|Br(o)|2.
∞∑
k=1

S2d
r+k

∑
m≥k

Sdme
−csm .

We set sr = α
c log r, for some fixed α > 3d+ 2, so that

Sr =
α

c
log((r − 1)! ) ≤ α

c
r log r.

Notice that there Sr+k . SrSk. On the other hand, we have

∑
m≥k

Sdme
−csm ≤ αd

cd

∑
m≥k

logdm

mα−d .
logd k

kα−d−1
.

From this, we get

∞∑
k=1

S2d
r+k

∑
m≥k

Sdme
−csm . S2d

r

∑
k≥1

log3d(k)

kα−(3d+1)
= O(S2d

r ).

This gives the upper bound E|Br(o)|2= O(S2d
r ). By definition, we have

EQ|Br(o)|= E [deg(o)|Br(o)|] ≤
(
Edeg(o)2

)1/2 (E|Br(o)|2)1/2 = O(Sdr ),

where the last step follows from Cauchy-Schwarz inequality. This concludes the proof of 2.

In order to estimate the growth of the Hyperbolic Poisson-Delaunay graph we use a result
proved in [BPP14].

Lemma 7.11. Let X be the Poisson-Delaunay graph rooted at o = 0 ∈ Hd. For each r ∈ N,
we denote by Br(o) the ball of radius r centered at o in X. Then E(deg(o)) < +∞ and there
exists a constant L such that

EQ|Br(o)|= O(eLr) when r → +∞.

In particular,

vQ(X, o) = lim inf
r→∞

1

r
EQ log|Br(o)|< +∞.

Proof. For r > 0, let BMr (o) be the hyperbolic ball of radius r centered at o = 0 ∈ Hd. By
[BPP14, Proposition 4.1], the following estimate holds: there are constants δ > 0 and L0 > 0
such that for any L ≥ L0

P
(
Br(o) 6⊂ BMLr(o)

)
≤ e−cr,

where c = eδL. We fix L ≥ L0 such that 2L < c. Consider K(Πo) = max{r : Br(o) 6⊂ BMLr(o)}.
Then, using the previous estimate, we obtain

P(K ≥ k) ≤
∑
r≥k

e−cr . e−ck,
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We decompose the expectation according to the values of K,

E|Br(o)|2 =

∞∑
k=1

E
[
|Br(o)|21{K=k}

]
≤

r−1∑
k=1

E
[∣∣Πo ∩BMLr(o)

∣∣2 1{K=k}

]
+

∞∑
k=r

E
[
|Bk+1(o)|21{K=k}

]
≤

r−1∑
k=1

E
[∣∣Πo ∩BMLr(o)

∣∣2 1{K=k}

]
+

∞∑
k=r

E
[∣∣∣Πo ∩BML(k+1)(o)

∣∣∣2 1{K=k}

]
We first bound from above the second term of the right hand side. As before, let g : D×Hd → R
be the function

g(Z, z) = 1Z∩BM
L(k+1)

(o)(z)1{K(Z)=k}.

By Slyvniak’s formula

E
[∣∣∣Πo ∩BML(k+1)(o)

∣∣∣2 1{K=k}

]
=

∫
BM
L(k+1)

(o)2

P(K(Πo ∪ {y1, y2}) = k)d(y1, y2)

. e2L(k+1)e−ck . e(2L−c)(k+1)

This implies that

∞∑
k=r

E
[∣∣∣Πo ∩BML(k+1)(o)

∣∣∣2 1{K=k}

]
.
∑
k≥r

e(2L−c)(k+1) = Cr,

and Cr → 0 when r →∞.
For the first term, we have

r−1∑
k=1

E
[∣∣Πo ∩BMLr(o)

∣∣2 1{K=k}

]
≤ E

[∣∣Πo ∩BMLr(o)
∣∣2] . e2Lr.

In summary, we obtained
E|Br(o)|2. e2Lr + Cr = O(e2Lr).

The proof concludes as in the previous lemma by applying the Cauchy-Schwarz inequality.

We now establish unimodularity of the Poisson-Delaunay graphs in both the Euclidean and
Hyperbolic case using Slivnyak’s formula. The proof also applies to the more general case when
M is a symmetric space. A different proof of the same result is given in [BPP14].

Lemma 7.12. The Poisson-Delaunay graph rooted at o = 0 ∈M is unimodular.

Proof. Given a discrete subset D of M and two points x, y ∈ D, let π(D,x, y) be the Delaunay
graph associated to D with two ordered root vertices corresponding to x and y. The codomain
of π is the space of isomorphism classes of graphs with two roots.

25



Recall that Π is a Poisson point process with intensity 1. The aim is to show that the
Delaunay graph associated to Πo rooted at o is unimodular. From Slivnyak’s formula, we
obtain for any measurable function on the space of graphs with two roots:

E

(∑
x∈Πo

F (π(Πo, o, x))

)
=

∫
M

E (F (π(Π ∪ {o, y}, o, y))) dy.

For each y ∈M , the expected value in the integral on the right-hand side can be written as

E (F (π(Π ∪ {o, y}, o, y))) = E (F (π(Π′ ∪ {o, y}, o, y)))

where Π′ is obtained from Π by symmetry with respect to the midpoint of the geodesic segment
[o, y]. The equality follows because the distribution of Π is invariant under isometries of M .

Next notice that π(Π′ ∪{o, y}, o, y) = π(Π∪{o, y}, y, o), that is, the two graphs are isomor-
phic with an isomorphism which preserves the ordered basepoints. Hence, applying Slivnyak’s
formula again, we obtain

E

(∑
x∈Π

F (π(Π, o, x))

)
= E

(∑
x∈Π

F (π(Π, x, o))

)
,

so that the Poisson-Delaunay graph is unimodular as claimed.

The first part of Theorem 7.8 follows directly from Lemma 7.10, Theorem 6.2 and Lemma
5.1, since in that case vQ(X, o) = 0. In the second part, by [BPP14, Theorem 1. 1 and Theorem
1. 4], the random walk on the 2-dimensional Hyperbolic Delaunay graph has positive linear
drift, so we can conclude as before using Lemma 7.11. As far as the authors are aware there
there are no results on the speed of the random walk on Hyperbolic Poisson-Delaunay graphs
of dimension d > 2 in the literature.
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