Tangential polynomials and matrix KdV elliptic solitons

Armando Treibich EA 2462 LML Faculté J. Perrin Université d'Artois, rue Jean Souvraz, SP 18 62300 Lens, France treibich@cmat.edu.uy

October 16, 2015

1 Introduction

In the mid 1970's, following earlier work by several people in former Soviet Union, I.M. Krichever developed the Theory of scalar and vector Baker-Akhiezer functions. Given a *d*-marked compact Riemann Surface $(\Gamma, \{p_1, \dots, p_d\})$ of genus g > 0, equipped with an effective divisor D of degree (g + d - 1), he constructed a meromorphic vector function $\psi_D(x, y, t; p) : \mathbb{C}^3 \times (\Gamma \setminus \{p_i\}) \to \mathbb{P}^1$ and two differential operators

$$L:=\partial_x^2+U(x,y,t) \quad \text{and} \quad M:=\partial_x^3+\frac{3}{2}U(x,y,t)\partial_x+W(x,y,t)$$

with $d \times d$ -matrix valued coefficients, satisfying the system of equations:

$$\left\{ \begin{array}{l} (\partial_y \operatorname{-} L)\psi_D = 0 \\ (\partial_t \operatorname{-} M)\psi_D = 0 \end{array} \right. \label{eq:phi}$$

The corresponding compatibility equation $[\partial_y - L, \partial_t - M] = 0$ is equivalent to the matrix KP equation, a system of partial derivative equations satisfied by the $d \times d$ -matrix functions U and W (cf. [4], p. 21-22 or [2] p. 86, 2.2 & 2.3).

Moreover, if there exists a meromorphic function $f : \Gamma \to \mathbb{P}^1$, with a double pole at each p_i , the B-A function ψ_D satisfies the system ([4],3.5 p. 21-22).

$$\begin{cases} (L - f)\psi_D = 0\\ (\partial_t - M)\psi_D = 0 \end{cases}$$

implying that U is independent of y and solves the simpler matrix Korteweg-deVries equation

$$(KdV)$$
 $U_t = \frac{1}{4}(3UU_x + 3U_xU + U_{xxx})$

On the other hand, the former matrix K solutions are doubly periodic in x, and called elliptic KP solitons, if the spectral data satisfies the *elliptic criterion* presented in [5], Assertion p.289.

Both elliptic scalar cases plus the matrix KP one have been extensively studied (see [5] and [2], as well as [3], [6], [1] and [7]-[10]) but, to our knowledge, the matrix KdV elliptic issue has been left beside.

Given d > 0 and an elliptic curve $(X, q) := (\mathbb{C}/\Lambda, 0)$ our purpose in this article is manifold:

- 1. to present simple polynomial equations defining spectral curves of matrix KP elliptic solitons;
- 2. to give an effective construction of the corresponding polynomials;
- 3. to deduce arbitrarily high genus spectral curves of matrix KdV elliptic solitons.

We proceed as follows :

Section 2: given any cover $\pi : \Gamma \to X$, marked at d points $\{p_1, \dots, p_d\}$ of the fibre $\pi^{-1}(q) \subset \Gamma$, we identify X and the smooth subset of Γ with their canonical images in the Jacobian of Γ . We call π *d*-tangential if the tangent to X at q is contained in $\sum_i T_{\Gamma,p_i}$, the subspace generated by the tangents to Γ at the d points $\{p_i\}$. Moreover, we call it hyperelliptic *d*-tangential if $(\Gamma, \{p_i\})$ is a hyperelliptic curve marked at d Weierstrass points. We prove they give rise to $d \times d$ matrix KP and KdV elliptic solitons respectively

Section 3: we associate to any such cover a *d*-tangential polynomial and a curve in a particular ruled surface $S \to X$, through which the cover factors. We give a recursive construction of all *d*-tangential polynomials and deduce simple equations for a family of *d*-tangential covers already considered in [2] (see also [8]).

Section 4: we construct all *d*-tangential polynomials in terms of the B-A function of (X, q).

Section 5: given any $\mu \in \mathbb{N}^4$ satisfying $\mu_{\circ} + 1 \equiv \mu_j \pmod{2}$ for j = 1, 2, 3, we construct a $(3 + \sum_i \mu_i)$ -dimensional family of 2×2 matrix KdV elliptic solitons.

2 *d*-tangential covers and $d \times d$ matrix KP elliptic solitons

We fix hereafter a lattice $\Lambda \subset \mathbb{C}$ and a local coordinate, say z, at the origin of the elliptic curve $(X,q) := (\mathbb{C}/\Lambda, 0)$. To any projection $\pi : \Gamma \to X$ we associate the Abel embedding $\Gamma \to Jac\Gamma$ into its generalized Jacobian and dual morphism $\pi^* : X \to Jac\Gamma$, $q' \mapsto \mathcal{O}_{\Gamma}(\pi^*(q' - q))$. The tangent space to Γ at any smooth point p, denoted $T_{\Gamma,p}$, can therefore be identified with its image in $\mathrm{H}^1(\Gamma, \mathcal{O}_{\Gamma})$, the tangent space to $Jac\Gamma$ at its origin. We will also let $K(\Gamma)$ and K(X) denote the corresponding fields of meromorphic functions.

Lemma 1 ([7], 1.4, p. 613)

Given any projection $\pi : \Gamma \to X$, the derivative of its dual morphism $\pi^* : JacX \to Jac\Gamma$ injects $T_{X,q} = H^1(X, \mathcal{O}_X)$ into $H^1(\Gamma, \mathcal{O}_\Gamma)$.

Proof: The Albanese morphism $Alb(\pi) : Jac\Gamma \to JacX, M \mapsto det(\pi_*(M)) \otimes det(\pi_*(\mathcal{O}_{\Gamma}))^{-1}$ composed with π^* is the multiplication by $deg(\pi)$. Hence $Ker(\pi^*)$ is finite and $d(\pi^*)$ injective.

Definition 2

Let $\pi : (\Gamma, \{p_1, \dots, p_d\}) \to X$ be a projection marked at d points of the fibre $\pi^{-1}(q)$.

- 1. We will call π a d-tangential cover if and only if it satisfies the following conditions:
 - (a) $d(\pi^*)(T_{X,q}) \subset \sum_{i=1}^d T_{\Gamma,p_i} \subset \mathrm{H}^1(\Gamma, \mathcal{O}_{\Gamma});$
 - (b) $d(\pi^*)(T_{X,q}) \nsubseteq \sum_{i \neq j} T_{\Gamma,p_i}$ for any $1 \le j \le d$.

2. If Γ is a hyperelliptic curve and any p_i a Weierstrass point, we will say π is hyperelliptic d-tangential. In the latter case there exists a unique involution, denoted $\tau_{\Gamma} : \Gamma \to \Gamma$, fixing $\{p_i\}$ and with quotient curve isomorphic to \mathbb{P}^1 .

Remark 1

- 1. The above condition 1(b) is equivalent to $h^0(\Gamma, \mathcal{O}_{\Gamma}(\sum_i p_i)) = 1$ and always true if d = 1. Skipping it when d > 1 could give us superfluous marked points, meaning that π could be a d'-tangential cover for some $1 \leq d' < d$. This weaker notion still gives rise to $d \times d$ matrix KP elliptic solitons as was shown in $[\mathcal{Q}]$ (see also [1] and $[\mathcal{S}]$ -1.13).
- 2. The equality $h^0(\Gamma, \mathcal{O}_{\Gamma}(\sum_i p_i)) = 1$ is also true as long as Γ is a hyperelliptic curve of genus $g \geq d$ and p_i a Weierstrass point for any $i = 1, \dots, d$.

Theorem 3 (*d*-tangency criterion [8]-1.8)

A d-marked cover $\pi : (\Gamma, \{p_1, \dots, p_d\}) \to X$ is d-tangential if and only if $h^0(\Gamma, \mathcal{O}_{\Gamma}(\sum_i p_i)) = 1$, $\{p_i\} \subset \pi^{-1}(q)$ and there exists a morphism $\kappa : \Gamma \to \mathbb{P}^1$, called henceforth d-tangential, such that:

- 1. κ is holomorphic outside $\pi^{-1}(q)$;
- 2. over a neighbourhood of $\pi^{-1}(q)$, the divisor of poles of $\kappa + \pi^*(\frac{1}{z})$ is equal to $\sum_i p_i$.

Lemma 4 (5] Assertion, p.289

Let $\pi : (\Gamma, \{p_1, \dots, p_d\}) \to X$ be a d-tangential cover, equipped with a d-tangential function $\kappa : \Gamma \to \mathbb{P}^1$ and a local coordinate at any p_i , say λ_i , such that $\kappa + \pi^*(\frac{1}{z}) = \frac{1}{\lambda_i} + O(\lambda_i)$.

Then, for any $\omega \in \Lambda$ there exists a holomorphic function $\varphi_{\omega} : \Gamma \setminus \{p_i\} \to \mathbb{C}$ with the following essential singularity at any p_i :

$$\varphi_{\omega}(\lambda_i) = exp(\frac{\omega}{\lambda_i})(1+O(\lambda_i))$$

Lemma 5

Let $\pi : (\Gamma, \{p_1, \cdots, p_d\}) \to X$ be a hyperelliptic d-tangential cover. Then:

- 1. there exists a unique d-tangential function $\kappa: \Gamma \to \mathbb{P}^1$ satisfying $\kappa \circ \tau_{\Gamma} = -\kappa$;
- 2. there exists a projection $f: \Gamma \to \mathbb{P}^1$ with pole divisor $(f)_{\infty} = \sum_i 2p_i$ and same principal part as $\left(\kappa + \pi^*(\frac{1}{z})\right)^2$ at each Weierstrass point p_i .

Proof:

- 1. Let $\kappa : \Gamma \to \mathbb{P}^1$ be the unique *d*-tangential function, up to an additive constant. One can first check that $\tau_{\Gamma}^*(\kappa)$ is also *d*-tangential and has same principal parts as κ at $\{p_i\}$. Hence $\kappa + \tau_{\Gamma}^*(\kappa)$ is constant, say $c \in \mathbb{C}$. It follows that $\kappa + \frac{c}{2}$ is τ_{Γ} -anti-invariant.
- 2. Pick any $i = 1, \dots, d$ and let λ_i and $f_i : \Gamma \to \mathbb{P}^1$ denote, respectively, the τ_{Γ} -anti-invariant local coordinate at p_i such that $\kappa + \pi^*(\frac{1}{z}) = \frac{1}{\lambda_i}$ and a degree-2 projection with principal part $\frac{1}{\lambda_i^2}$ at p_i . Then $f := \sum_{i=1}^d f_i$ has the required properties.

Theorem 6

Let π be a d-tangential cover equipped with data $(\kappa, \{(p_i, \lambda_i\}))$ as in Lemma 4. Then, the corresponding $d \times d$ -matrix KP solutions are Λ -periodic in x. Analogously, if π is hyperelliptic d-tangential we obtain a family of $d \times d$ -matrix KdV solutions Λ -periodic in x.

Proof: Let g denote the arithmetic genus of Γ and choose, at each p_i , a local coordinate λ_i satisfying $\kappa + \pi^*(\frac{1}{z}) = \frac{1}{\lambda_i} + O(\lambda_i)$. Given any $(x, y, t) \in \mathbb{C}^3$ and non-special degree d+g-1 effective divisor D, with support disjoint with $\{p_i\}$, we will denote $\psi_D(x, y, t)$ the vector Baker-Akhiezer function associated to the data $(\Gamma, \{(p_i, \lambda_i)\}, D)$ (cf. [4]). It is the unique meromorphic function on $(\Gamma \setminus \{p_i\})$ such that:

- 1. its divisor of poles is bounded by D;
- 2. in a neighbourhood of each p_i it has an essential singularity of the following type

(9)
$$\psi_D(x, y, t)(\lambda_i) = e^{\frac{x}{\lambda_i} + \frac{y}{\lambda_i^2} + \frac{i}{\lambda_i^3}} \left(\vec{e}_i + \vec{\xi}_1^i(x, y, t)\lambda_i + O(\lambda_i^2)\right)$$

where $\vec{e}_i \in \mathbb{C}^d$ is the vector having a 1 at the *i*-th place and 0 everywhere else.

Recall also, or any $\omega \in \Lambda$, the holomorphic function $\varphi_{\omega} : \Gamma \setminus \{p_i\} \to \mathbb{C}$ constructed in Lemma 4 and having the following essential singularity at each $p_i: \varphi_{\omega}(\lambda_i) = e^{\frac{\omega}{\lambda_i}}(1 + O(\lambda_i))$.

The uniqueness of ψ_D implies that for any $\omega \in \Lambda$ and $(x, y, t) \in \mathbb{C}^3$ we must have:

 $\psi_D(x+\omega, y, t) = \varphi_\omega \psi_D(x, y, t).$

Comparing their developments around p_i we deduce that $\vec{\xi}_1^i(x, y, t)$ is Λ -additive in x, i.e.:

 $\forall i, \forall \omega \in \Lambda, \exists a \in \mathbb{C} \quad \text{such that} \quad \forall x, y, t \in \mathbb{C}, \ \vec{\xi_1^i}(x + \omega, y, t) = \vec{\xi_1^i}(x, y, t) + a\vec{e_i}.$

In particular the $d \times d$ matrix KP soliton

$$U(x, y, t) = -2\frac{\partial}{\partial x} \left(\vec{\xi_1^1} \cdots \vec{\xi_1^d}\right)$$

associated to $(\Gamma, \{(p_1, \lambda_1), \cdots, (p_d, \lambda_d)\}, D)$ is A-periodic with respect to x.

At last, if π is hyperelliptic *d*-tangential we choose a τ_{Γ} -anti-invariant *d*-tangential function κ , local coordinates λ_i $(i = 1, \dots, d)$ and a projection $f := \sum_i f_i : \Gamma \to \mathbb{P}^1$ as in Lemma 5. In the latter case $e^{yf(p)}$ is holomorphic outside the *d* marked points and has the following essential singularity at each p_i : $e^{yf(p)} = e^{y\frac{1}{\lambda_i^2}}$. We still get $d \times d$ matrix KP elliptic solitons but now ψ_D also satisfies $\psi_D(x, y, t) = \psi_D(x, 0, t)e^{yf}$ as well as $\partial_y\psi_D = f\psi_D$, implying that $U = -2\frac{\partial}{\partial x}\left(\xi_1^i\right)$ is independent of *y* and solves the KdV equation as explained in the Introduction.

3 *d*-tangential covers and polynomials

Let z denote the canonical coordinate of $X = \mathbb{C}/\Lambda$ at its origin q = 0, and let U and \overline{U} denote $U := X \setminus \{q\}$ and some neighbourhood of q. We start constructing a ruled surface through which any d-tangential cover factors.

Definition 7

1. We define the ruled surface $\pi_{\mathcal{S}} : \mathcal{S} \to X$ by glueing the fibers of $\mathbb{P}^1 \times U$ and $\mathbb{P}^1 \times \overline{U}$ over each $q' \in U \cap \overline{U}$ by means of a translation as follows:

$$\forall q' \in U \cap \overline{U} \quad \text{we identify} \quad (T,q') \in \mathbb{P}^1 \times U \quad \text{with} \quad (\overline{T} - \frac{1}{z(q')}, q') \in \mathbb{P}^1 \times \overline{U}.$$

- 2. The infinity sections $q' \in U \mapsto (\infty, q') \in \mathbb{P}^1 \times U$ and $q' \in \overline{U} \mapsto (\infty, q') \in \mathbb{P}^1 \times \overline{U}$ get glued together defining a particular one denoted by $C_o \subset S$.
- 3. Given any $Q(T) \in K(X)[T]$, considered as a rational morphism $\mathbb{P}^1 \times U \subset S \to \mathbb{P}^1$, the zero-divisors $\{Q(T) = 0\} \subset \mathbb{P}^1 \times U$ and $\{Q(\overline{T} \frac{1}{z}) = 0\} \subset \mathbb{P}^1 \times \overline{U}$ get glued over $U \cap \overline{U}$, defining one in S denoted D_Q .

Remark 2

Choose (T^{-1}, z) as couple of local coordinates at $p_o := (\infty, q) \in \mathbb{P}^1 \times X$ and let p_1 denote the point infinitely near p_o corresponding to the tangent direction -1. By blowing up p_o , then p_1 , and contracting the strict transform of $\mathbb{P}^1 \times \{q\}$, we obtain a ruled surface isomorphic to S.

Proposition 8

Let $\kappa_{\mathcal{S}}: \mathcal{S} \to \mathbb{P}^1$ correspond to the first projection $T: \mathbb{P}^1 \times X \to \mathbb{P}^1$. Then:

- 1. the divisor of zeroes and poles of $\kappa_{\mathcal{S}}$ is equal to $D_T (C_o + \mathcal{S}_q)$;
- 2. the restriction of $\kappa_{\mathcal{S}} + \pi_{\mathcal{S}}^*(\frac{1}{z})$ to $\mathbb{P}^1 \times \overline{U}$ has a simple pole along C_o ;
- 3. C_o has 0 self-intersection and K_S , the canonical divisor of S, is linearly equivalent to $-2C_o$.

Proof.

- 1. $\kappa_{\mathcal{S}}$ restricts over the open subsets $\mathbb{P}^1 \times U$ and $\mathbb{P}^1 \times \overline{U}$ to T and $\overline{T} \frac{1}{z}$, respectively. Hence, its divisor of zeros and poles is $D_T (C_o + \mathcal{S}_q)$.
- 2. It also follows that $\kappa_{\mathcal{S}} + \pi_{\mathcal{S}}^*(\frac{1}{z})$ is given by \overline{T} over $\mathbb{P}^1 \times \overline{U}$ and has a simple pole along C_o .
- 3. The section C_o having genus 1, the adjunction formula gives $1 = 1 + \frac{1}{2}C_o(-C_o)$, implying $C_o.C_o = 0$. The wedge products $dT \wedge dz$ (on $\mathbb{P}^1 \times U$) and $d\overline{T} \wedge dz$ (on $\mathbb{P}^1 \times \overline{U}$) get glued over $U \cap \overline{U}$, defining a meromorphic differential with divisor class $-2C_o$ as announced.

Lemma 9

Let $\pi : (\Gamma, \{p_i\}) \to X$ be a d-tangential cover of degree n equipped with a d-tangential function $\kappa : \Gamma \to \mathbb{P}^1$. Then, its characteristic polynomial with respect to the degree-n algebraic extension $K(\Gamma)/\pi^*(K(X))$, say $P_{\kappa}(T) = T^n + \sum_{j=1}^n \alpha_{j,\kappa} T^{n-j} \in K(X)[T]$, has the following properties:

- 1. any coefficient $\alpha_{j,\kappa}$ is holomorphic outside q and $(\alpha_{j,\kappa})_{\infty} \leq jq$, i.e.: $\alpha_{j,\kappa} \in \mathrm{H}^0(X, \mathcal{O}_X(jq));$
- 2. all coefficients of $z^d P_{\kappa}(T \frac{1}{z}) =: z^d T^n + \sum_{j=1}^n a_{j,\kappa} T^{n-j}$ are holomorphic at q;
- 3. $a_{j,\kappa}$ vanishes to order $\geq (d-j)$ at q for all j < d and there exists $l \geq d$ such that $a_{l,\kappa}(q) \neq 0$.

Proof

- 1. Up to a sign $\alpha_{j,\kappa}$ is the *j*-th symmetric function of κ with respect to π . Recall also that κ is holomorphic outside $\pi^{-1}(q)$ and has, at any point $p \in \pi^{-1}(q)$, a pole of order bounded by $ind_{\pi}(p)$, the ramification index of π at p. Hence $\alpha_{j,\kappa}$ is holomorphic outside q while having at q a pole of order bounded by j.
- 2. Analogously, up to a sign $a_{j,\kappa}z^{-d}$ is the *j*-th symmetric function of $\kappa + \pi^*(\frac{1}{z})$. The latter has a simple pole at any marked point p_i and is holomorphic elsewhere in $\pi^{-1}(q)$. Hence $a_{j,\kappa}z^{-d}$ must have a pole at *q* of order bounded by $min\{d, j\}$.

3. One can check that $a_{l,\kappa}z^{-d}$ has order d (at least) for $l = \sum_{i=1}^{d} ind_{\pi}(p_i)$. In other words, $z^{d}P_{\kappa}(T-\frac{1}{z})$ has the announced properties.

Definition 10

A monic polynomial $P(T) = T^n + \sum_{j=1}^n \alpha_j T^{n-j} \in K(X)[T]$ will be called d-tangential if and only if it satisfies the following conditions:

- 1. $\forall j = 1, \dots, n$ the function α_j is holomorphic outside q and has a pole of order $\leq j$ at q;
- 2. all coefficients of $z^d P(T \frac{1}{z}) =: z^d T^n + \sum_{i=1}^n a_i T^{n-i}$ are holomorphic at q;
- 3. d is the least positive integer satisfying the above property (i.e.: $\exists j \leq n \text{ such that } a_j(0) \neq 0$).

We will let $\theta_{d,n}(X,z)$ denote the subset of d-tangential polynomials of degree n. The affine subspace cut out in K(X)[T] by the first two conditions is the union $\Theta_{d,n}(X,z) := \bigcup_{i=1}^{d} \theta_{i,n}(X,z)$.

Example 1

Let $\wp \in K(X)$ denote the unique meromorphic function with a double pole at q and local development $\wp(z) = \frac{1}{z^2} + O(z^2)$, and \wp' its derivative. Then $P(T) = T^3 - 3\wp T + \wp' + b\wp$ belongs to $\theta_{2,3}(X, z)$ for any $b \neq 0$, and $R(T) = T^3 - (2c+1)\wp T + c\wp'$ belongs to $\theta_{2,3}(X, z)$ for any $c \neq 1$.

One can also check that for any $d, n \in \mathbb{N}^*$, $\Theta_{d,d}(X,z) = T^d + \sum_{j=1}^d \mathrm{H}^0(X, \mathcal{O}_X(jq))T^{d-j}$ and $\dim \Theta_{d,d}(X,z) = \sum_{j=1}^d j = \frac{1}{2}d(d+1)$ while $\Theta_{0,n}(X,z)$ is empty.

Lemma 11

Let $\Delta, \Delta^{-1}: K(X)[T] \to K(X)[T]$ denote the K(X)-lineal morphisms such that

$$\forall m \ge 0, \ \Delta(T^m) = mT^{m-1} \ and \ \Delta^{-1}(T^m) = \frac{1}{m+1}T^{m+1}.$$

For any $P \in K(X)[T]$ they satisfy:

- 1. $\Delta \circ \Delta^{-1}(P) = P$ and $\Delta^{-1} \circ \Delta(P) = P P(0);$
- 2. $\forall n > d, P \in \Theta_{d,n}(X,z) \text{ implies } \frac{1}{n}\Delta(P) \in \Theta_{d,n-1}(X,z);$

3. if $\Theta_{d,n}(X,z) \neq \emptyset$ the map $\frac{1}{n}\Delta : \Theta_{d,n}(X,z) \to \Theta_{d,n-1}(X,z)$ has kernel $\mathrm{H}^0(X, \mathcal{O}_X(dq))$.

Theorem 12 - Recursive formula

For any $0 < d < j \le n$ and $P \in \Theta_{d,j-1}(X,z)$ there exists $\alpha \in H^0(X, \mathcal{O}_X(jq))$, unique modulo $H^0(X, \mathcal{O}_X(dq))$, such that $j\Delta^{-1}(P) + \alpha$ belongs to $\Theta_{d,j}(X,z)$. It follows that $\Theta_{d,n}(X,z)$ is not empty and has dimension $(n - d)d + \dim(\Theta_{d,d}(X,z)) = (n - d)d + \frac{1}{2}d(d + 1) = nd - \frac{1}{2}d(d - 1)$.

Proof: The function $j\Delta^{-1}(P)(\frac{1}{z})$ has a pole of order j at q, because $j\Delta^{-1}(P) \in K(X)[T]$ is monic of degree j. Hence, there exists $\alpha \in \mathrm{H}^0(X, \mathcal{O}_X(jq))$ such that $z^d(\alpha + j\Delta^{-1}(P)(\frac{1}{z}))$ is holomorphic at q, implying that $j\Delta^{-1}(P) + \alpha \in \Theta_{d,j}(X, z)$, as well as the other properties.

Lemma 13 - Reducibility criterion

The subset

$$\bigcup \theta_{d',n'}(X,z)\theta_{d-d',n-n'}(X,z) \subset \theta_{d,n}(X,z),$$

with the union taken over all d', n' such that 0 < d' < d and 0 < n' < n, contains all reducible elements. In other words $P \in \theta_{d,n}(X, z)$ is reducible in K(X)[T] if and only if it factors as P = QR, with $Q \in \theta_{d',n'}(X, z)$ and $R \in \theta_{d-d',n-n'}(X, z)$ for some 0 < d' < d and 0 < n' < n.

Proof: If $P \in \theta_{d,n}(X, z)$ is reducible we can assume it factors as as product P = QR of two monic polynomials with coefficients holomorphic outside $q \in X$. A straightforward verification confirms they must satisfy property 11.1) above, as well as 11.2) for some $d', d'' \in \mathbb{N}^*$. In particular all coefficients of $z^{d'+d''}P(T-\frac{1}{z}) = z^{d'}Q(T-\frac{1}{z})z^{d''}R(T-\frac{1}{z})$ must be holomorphic at q and its restriction to z = 0 can not vanish, implying d' + d'' = d as asserted.

Theorem 14

For any $1 \leq d \leq n$ $\theta_{d,n}(X,z)$ is an open dense subset of $\Theta_{d,n}(X,z)$, with irreducible generic element.

Proof: The complement of $\theta_{d,n}(X,z) \subset \Theta_{d,n}(X,z)$ is the affine subspace $\Theta_{d-1,n}(X,z)$, which has positive codimension (equal to n - d + 1). Hence, $dim(\theta_{d,n}(X,z)) = nd - \frac{1}{2}d(d-1)$, bigger than the dimension of the reducible ones, and its generic element must be irreducible.

Remark 3

For any $P(T) \in \Theta_{d,n}(X,z)$ the coefficients of $z^d P(T - \frac{1}{z}) = z^d T^n + \sum_{j=1}^n a_j T^{n-j}$ are holomorphic at q. We also know that $a_j(z) = z^{d-j}b_j(z)$, for any $j = 1, \dots, d$, with b_j holomorphic at q and $b_1 = -n$ (cf. proof of Lemma 9.3)). Thus, we are naturally lead to the following definitions.

Definition 15

To any $P(T) \in \Theta_{d,n}(X, z)$ we associate

$$V_d(P) := z^d P(T - \frac{1}{z})|_{z=0} = \sum_{j=d}^n a_j(0) T^{n-j} \quad as \ well \ as \quad M_d(P) := w^d - nw^{d-1} + \sum_{j=2}^d b_j(0) w^{d-j}$$

and let

$$V_d: \Theta_{d,n}(X,z) \to \mathbb{C}_{n-d}[T] \quad and \quad M_d: \Theta_{d,n}(X,z) \to \mathbb{C}_d[w]$$

denote the corresponding (affine) linear maps.

Lemma 16

For any $1 \leq d \leq n$ and generic $P \in \theta_{d,n}(X,z) \subset \Theta_{d,n}(X,z)$:

- 1. $V_d: \Theta_{d,n}(X, z) \to \mathbb{C}_{n-d}[T]$ is surjective with kernel $\Theta_{d-1,n}(X, z)$;
- 2. $V_d(P)$ has degree n-d and only simple roots;
- 3. $\frac{d!}{n!}\Delta^{\circ(n-d)}:\Theta_{d,n}(X,z)\to\Theta_{d,d}(X,z)$ is surjective;
- 4. $M_d(P)$ has d simple non-zero roots.

Proof:

- 1. The first item implies the second one and can be proved by induction on n. Let us indeed assume $V_d : \Theta_{d,n-1}(X, z) \to \mathbb{C}_{n-1-d}[T]$ is surjective. The result follows by coupling the surjectivity of $\Delta := \partial_T$ with the fact that it commutes with V_d .
- 2. According to Lemma 11 and Theorem 12 the linear map $\frac{1}{j}\Delta: \Theta_{d,j}(X,z) \to \Theta_{d,j-1}(X,z)$ is surjective for any $d < j \leq n$, and $\frac{d!}{n!}\Delta^{\circ(n-d)}: \Theta_{d,n}(X,z) \to \Theta_{d,d}(X,z)$ as well.
- 3. Pick any $P_o \in \Theta_{d,n}(X, z)$ such that $\frac{d!}{n!}\Delta^{n-d}(P_o) = T^d$. Then one can check that $M_d(P_o) = w^d + \sum_{j=1}^d (-1)^j {n \choose j} w^{d-j}$, which has d simple non-zero roots. The latter property being an open one the result follows.

Remark 4

Given any $P \in \theta_{d,n}(X,z) \subset K(X)[T]$ we will consider its zero-divisor $D_P \subset S$ (see Definition 8.3)) and let $e: \hat{D}_P \subset \hat{S} \to D_P \subset S$ denote its strict transform by the blowing up of $p_S \in S$. It comes with projections $\pi := \pi_S \circ e: \hat{D}_P \to X$ and $\kappa := \kappa_S \circ e: \hat{D}_P \to \mathbb{P}^1$.

Lemma 17

The zero-divisor $D_P \subset S$ of any $P \in \theta_{d,n}(X,z)$ has the following local and global properties:

- 1. D_P is defined on the open subset $\mathbb{P}^1 \times (X \setminus \{q\}) \subset S$ by the equation P(T, z) = 0;
- 2. D_P is defined over a neighbourhood of $p_{\mathcal{S}} \in \mathcal{S}$ by the equation $z^d \overline{T}^{-n} P(\overline{T} \frac{1}{z}, z) = 0;$
- 3. $D_P \cap C_o = \{p_S\}$ and $D_P \cap S_q = \{p_S\} \cup \{(\overline{T}, q), V_d(P)(\overline{T}) = 0\};$
- 4. its tangent cone at $p_{\mathcal{S}}$ is defined by the equation $\overline{T}^{-d}M_d(P)(z\overline{T}) = 0;$
- 5. D_P is linearly equivalent to $nC_o + dS_q$.

Proof: 1), 2) and 3) - The first two items follow from the construction of \mathcal{S} (cf. Remark 3.2)), while the third one from the definition of $\theta_{d,n}(X, z)$.

4) - Over a neighbourhood of $\pi^{-1}(q)$, $\kappa + \pi^*(\frac{1}{z})$ has pole-divisor equal to $\sum_i p_i$, and characteristic polynomial with respect to π equal to $P_{\kappa}(\overline{T} - \frac{1}{z}) =: \overline{T}^n + \sum_{j=1}^n c_{j,\kappa} \overline{T}^{n-j}$. Up to a sign, its coefficients are the symmetric functions of $\kappa + \pi^*(\frac{1}{z})$ with respect to π and satisfy:

$$c_{j,\kappa} = \frac{1}{z^j} O(1) \quad \text{for any} \quad 1 \le j \le d \quad (\text{resp.: } c_{j,\kappa} = \frac{1}{z^d} O(1) \quad \text{for any} \quad d \le j \le n).$$

On the other hand D_P is given over a neighbourhood of $p_{\mathcal{S}} \in \mathcal{S}$ as zero-divisor of

$$\overline{T}^{-n}z^d P_{\kappa}(\overline{T} - \frac{1}{z}) =: z^d + \sum_{j=1}^n z^d c_{j,\kappa}\overline{T}^{-j} = z^d + \sum_{j=1}^d z^j c_{j,\kappa}z^{d-j}\overline{T}^{-j} + \sum_{j>d}^n z^d c_{j,\kappa}\overline{T}^{-j}.$$

Hence, its tangent cone at $p_{\mathcal{S}}$ is given by the equation $z^d + \sum_{j=1}^d (z^j c_{j,\kappa})|_{z=0} z^{d-j} \overline{T}^{-j} = 0$ and the assertion follows.

5) - Once we know that $D_P \cap C_o = \{p_S\}$ and D_P has a singularity of multiplicity d at p_S transverse to C_o , we deduce $D_P.C_o = d$ and $D_P.S_q = n$ implying $D_P \in |nC_o + dS_q|$.

Proposition 18

For any $1 \leq d \leq n$ and generic $P \in \theta_{d,n}(X, z)$:

- 1. D_P has an ordinary singularity at p_S , of multiplicity d and transverse to $C_o + S_q$;
- 2. D_P is irreducible, smooth outside p_S and of arithmetic genus nd + 1 d.

Proof

1. The tangent cone of D_P at p_S is the zero-locus of the degree-*d* form $\overline{T}^{-d}M_d(P)(z\overline{T})$. For generic *P* it is the union of *d* lines transverse to $C_o + S_q$.

2. According to the preceding results $K_{\mathcal{S}} = -2C_o$, the generic $P \in \theta_{d,n}(X, z)$ is irreducible and $D_P \in |nC_o + d\mathcal{S}_q|$. We deduce its arithmetic genus via the adjunction formula. Forcing D_P to be smooth at every point in $\mathcal{S}_q \setminus \{p_{\mathcal{S}}\}$ or outside \mathcal{S}_q are open conditions on $\theta_{d,n}(X, z)$. The first one is true as soon as $V_d(P)$ has $n \cdot d$ simple roots. As for the second one, one can check that for almost any $a \in \mathbb{C}$ the divisor D_{P+a} is smooth outside \mathcal{S}_q .

Theorem 19

For any $1 \leq d < n$ and generic $P \in \theta_{d,n}(X, z)$ as above:

- 1. $\pi: \hat{D}_P \to X$ is non-ramified at the *d* pre-images $e^{-1}(p_S) \subset \pi^{-1}(q)$;
- 2. \hat{D}_P is smooth of genus $nd \frac{1}{2}d(d+1) + 1;$
- 3. κ is holomorphic outside $\pi^{-1}(q)$ and $\kappa + \pi^*(\frac{1}{z})$ has simple poles at $e^{-1}(p_S)$;
- 4. $\pi: (\hat{D}_P, e^{-1}(p_S)) \to X$ is a d-tangential cover.

Proof: The first three items follow immediately from the preceding properties. As for the fourth one, assume that generically $h^0(\hat{D}_P, \mathcal{O}_{\hat{D}_P}(\sum_i p_i)) > 1$ and recall the relation :

$$dim(\Theta_{d,n}(X,z)) - dim(\Theta_{d-1,n}(X,z)) = n - d + 1 \ge 2.$$

Then, for any non constant $h \in \mathrm{H}^{0}(\hat{D}_{P}, \mathcal{O}_{\hat{D}_{P}}(\sum_{i} p_{i}))$ there exists at least one $\lambda \in \mathbb{C}$ such that $\kappa + \lambda h + \pi^{*}(\frac{1}{z})$ has less than d poles. Hence, the characteristic polynomials of $\{\kappa + \lambda h, \lambda \in \mathbb{C}\}$ define a 1-dimensional family in $\Theta_{d,n}(X, z)$ intersecting $\Theta_{d-1,n}(X, z) = \bigcup_{i=1}^{d-1} \theta_{j,n}(X, z)$.

In particular, $dim(\Theta_{d,n}(X,z))$ should be bounded by $dim(\Theta_{d-1,n}(X,z)) + 1$. Contradiction!.

Corollary 20 ([2], p.288; see also [8], p.546)

For any $n > d \ge 1$ there exists a family of dimension $\frac{1}{2}d(2n - d + 1)$, of smooth d-tangential covers of degree n over (X,q) and genus $\frac{1}{2}d(2n - d + 1) - (d - 1)$. They give rise to a $(2nd + 1 - d^2) - dimensional family of <math>d \times d$ matrix KP elliptic solitons.

4 *d*-tangential polynomials in terms of the B-A function

Building upon classical properties of the Weierstrass Sigma and Zeta functions, $\sigma(z)$ and $\zeta(z) := \frac{\partial}{\partial z} \ln \sigma(z)$ (e.g.: [5] p. 283), it can be proved that for any $x \in \mathbb{C}$ the Baker-Akhiezer function $\psi_q(x)(z) := e^{x\zeta(z)} \frac{\sigma(z-x)}{\sigma(z)}$ is well defined on X and holomorphic outside q, where it has the local development $\psi_q(x)(z) = e^{\frac{x}{z}} \frac{1}{z} O(1)$. Once x is formally replaced by $\Delta := \partial_T$ in its Maclaurin development, it defines a linear application $\psi_q(\Delta)(z) : \mathbb{C}[T] \to K(X)[T]$. Given the fact that $e^{-\frac{\Delta}{z}}(P(T)) = P(T - \frac{1}{z})$ for any $P(T) \in K(X)[T]$, the outcome is an isomorphism between the subspaces $M_n \subset \mathbb{C}[T]$ of degree-n monic polynomials and the 1-tangential polynomials $\Theta_{1,n}(X,z) \subset K(X)[T]$ for any n (cf. [7]). In order to prove analogous characterizations for any $n > d \ge 1$, we will need the following properties of $\psi_q(x)(z)$ and its k-th partial derivatives as functions of the parameter x.

Lemma 21

The Maclaurin development in x of $F(x,z) := \sigma(z-x)$ and $\psi(x,z) := \psi_q(x)(z)$ satisfy:

1. $\psi(x,z) := 1 + \sum_{m=2}^{\infty} \alpha_m x^m$, with α_m meromorphic on X;

2. for any $m \geq 2$ the coefficient α_m has pole-divisor $(\alpha_m)_{\infty} = mq$ and

$$z^m \alpha_{m|z=0} = \frac{1 \cdot m}{m!} ;$$

3. for any $m \ge 1$ the m-th partial derivative $\psi^{(m)} := \partial_x^m \psi(x, z)$ is equal to

$$\psi^{(m)} = \frac{e^{x\zeta(z)}}{m!F(0,z)} \Big(\sum_{j=0}^{m} {m \choose j} \zeta^{m-j} \partial_x^j F\Big) = m!\alpha_m + O(x)$$

and satisfies:

(a) $z^{m+1}e^{-\frac{x}{z}}\psi^{(m)} = \sum_{j=0}^{\infty}\beta_j x^j$ has all its coefficients holomorphic at q; (b) its restriction to z = 0 satisfies $z^{m+1}e^{-\frac{x}{z}}\psi^{(m)}_{|z=0} = \frac{-x}{m!}(1+O(x)).$

Proof: 1) - Developping $\psi(x, z) := e^{x\zeta} \frac{F(x, z)}{F(0, z)} = \left(1 + \sum_{j=1}^{\infty} \frac{1}{j!} \zeta^j x^j\right) \left(1 + \sum_{i=1}^{\infty} \frac{\partial_x^i F}{F}(0, z) x^i\right)$ with respect to x we obtain the following formula:

$$m!\alpha_m = \zeta^m + \sum_{k=1}^m \binom{m}{k} \zeta^{m-k} \frac{\partial_x^k F}{F}(0,z).$$

2) - For any $m \ge 2$ a direct calculation gives $z^m m! \alpha_m(z) = 1 - m + O(z)$. Hence $(\alpha_m)_{\infty} = mq$.

3) - Recall that $z\zeta(z)$, $\zeta(z) - \frac{1}{z}$ and $\frac{z}{F(0,z)} = \frac{z}{\sigma(z)}$ are holomorphic in a neighbourhood of q, with values at q equal to 1, 0 and 1 respectively. Hence the Maclaurin development in x of

$$z^{m+1}e^{-\frac{x}{z}}\psi^{(m)} = \frac{e^{x(\zeta - \frac{1}{z})}}{m!} \frac{z}{F(0,z)} \Big(\sum_{j=0}^{m} {m \choose j} (z\zeta)^{m-j} z^{j} \partial_{x}^{j} F\Big)$$

has all its coefficients holomorphic at q. It also follows that its restriction to z = 0 is equal to $\frac{1}{m!}F(x,0)$, and therefore to $\frac{-x}{m!}(1+O(x))$.

Theorem 22

For any $n \ge 1$ the linear map $\psi := \psi(\Delta, z) : \mathbb{C}[T] \to K(X)[T]$ restricts to an isomorphism from M_n onto $\theta_{1,n}(X, z) = \Theta_{1,n}(X, z)$ (i.e.: $\Theta_{1,n}(X, z) = \psi(M_n)$). Moreover, for any $n \ge d > 1$:

$$\Theta_{d,n}(X,z) = \psi(M_n) \oplus \bigoplus_{k=1}^{d-1} \psi^{(k)}(T\mathbb{C}_{n-1-k}[T]).$$

5 d-tangential polynomials and matrix KdV elliptic solitons

At last we consider the canonical involution $[-1] : (X,q) \to (X,q)$, fixing $\omega_o := q$ as well as the three other half-periods $\{\omega_j, j = 1, 2, 3\}$ and satisfying $: [-1]^*(z) = -z$.

Recall also that given a hyperelliptic curve Γ there exists a unique involution $\tau_{\Gamma} : \Gamma \to \Gamma$ such that the quotient curve is isomorphic to \mathbb{P}^1 . Its fixed points are the so-called Weierstrass points.

We gather hereafter the first basic definitions and results concerning hyperelliptic d-tangential covers (cf. [9] 4.1 p.457 and Definition 3.2)).

Definition 23

We let $\tau_{\mathcal{S}} : \mathcal{S} \to \mathcal{S}$ denote the involution defined by $(T, z) \mapsto (-T, -z)$ and $(\overline{T}, z) \mapsto (-\overline{T}, -z)$ over each trivialization of $\pi_{\mathcal{S}}$ (see Definition 8.1)). It satisfies $\pi_{\mathcal{S}} \circ \tau_{\mathcal{S}} = [-1] \circ \pi_{\mathcal{S}}$ and has two fixed points over each half-period ω_i : one in C_o , denoted by s_i , and the other one denoted by r_i (i = 0, ..., 3). In particular $s_o = p_{\mathcal{S}} := C_o \cap \mathcal{S}_q$.

Proposition 24 (/8/ 2.5)

Any degree-n hyperelliptic d-tangential cover $\pi : (\Gamma, \{p_1, \cdots, p_d\}) \to X$ has unique d-tangential function $\kappa : \Gamma \to \mathbb{P}^1$ and associated morphism $\iota : \Gamma \to S$ such that:

- 1. $\kappa \circ \tau_{\Gamma} = -\kappa$ and its characteristic polynomial satisfies $P_{\kappa}(-T, -z) = (-1)^n P_{\kappa}(T, z);$
- 2. π factors as $\pi = \pi_{\mathcal{S}} \circ \iota$, with $\iota(\Gamma) = D_{P_{\kappa}}$, the zero-divisor of $P_{\kappa}(T)$ (see Definition 7.3));
- 3. $\iota \circ \tau_{\Gamma} = \tau_{\mathcal{S}} \circ \iota$, hence $\iota(\Gamma)$ is $\tau_{\mathcal{S}}$ -invariant and $\pi \circ \tau_{\Gamma} = [-1] \circ \pi$;
- 4. $\iota^{-1}(s_0) = \{p_1, \cdots, p_d\}$ while $\cup_{i=0}^3 \iota^{-1}(r_i)$ is made of all other Weierstrass points.

Definition 25

- 1. We say that a $\tau_{\mathcal{S}}$ -invariant effective divisor D of \mathcal{S} has type $(\gamma_i) \in \mathbb{N}^4$ if and only if γ_i is the multiplicity of D at r_i for any $i = 0, \dots, 3$.
- 2. For any $n \ge d \ge 1$ we let $\Theta_{d,n}^{\tau}(X,z) \subset \Theta_{d,n}(X,z)$ denote the affine subspace of so-called symmetric d-tangential polynomials P(T,z) such that $P(-T,-z) = (-1)^n P(T,z)$.

Theorem 26 (cf. [9] 6.2)

For any $\mu := (\mu_i) \in \mathbb{N}^4$ satisfying $\mu_0 + 1 \equiv \mu_1 \equiv \mu_2 \equiv \mu_3 \pmod{2}$ and $n \in \mathbb{N}$ such that $2n + 1 = \sum_i \mu_i$ there exists a unique τ_s -invariant irreducible curve of type μ in $|nC_o + S_q|$.

Lemma 27

Fix $\mu := (\mu_i) \in \mathbb{N}^4$ satisfying $\mu_0 + 1 \equiv \mu_1 \equiv \mu_2 \equiv \mu_3 \pmod{2}$ and choose $\alpha, \beta \in \mathbb{N}^4$ equal, up to a common permutation of their coordinates, to (2, 0, 0, 0) and (0, 2, 0, 0). We then denote:

- 1. $\mu^{(0)}, \mu^{(1)}, \mu^{(2)}, \mu^{(3)} \in \mathbb{N}^4$ the integer vectors μ , $\mu + \alpha$, $\mu + \beta$ and $\mu + \alpha + \beta$;
- 2. n_i such that $2n_i + 1 = \sum_{j=0}^3 (\mu_j^{(i)})^2$ for any $i = 0, \dots, 3;$
- 3. n the common value $n := n_1 + n_2 = n_0 + n_3$ and $\gamma := \mu^{(1)} + \mu^{(2)} = \mu^{(0)} + \mu^{(3)} \in \mathbb{N}^4$;
- 4. $\Gamma_i \in |n_i C_o + S_o|$ the unique τ_S -invariant curve of type $\mu^{(i)}$, for any $i = 0, \dots, 3$.

Then, any element D of the pencil generated by the divisors $\Gamma_1 + \Gamma_2$ and $\Gamma_0 + \Gamma_3$ satisfies:

- 1. D is $\tau_{\mathcal{S}}$ -invariant, has type γ and belongs to the linear system $|nC_o + 2S_q|$;
- 2. generically, D is irreducible and has an ordinary singularity of multiplicity 2 at s_0 .

Proof: Let us only prove the last assertion. The tangent cones of $\Gamma_1 + \Gamma_2$ and $\Gamma_0 + \Gamma_3$ at s_0 are given by the equations

$$z^{2} - nz\overline{T}^{-1} + n_{1}(n - n_{1})\overline{T}^{-2} = 0$$
 and $z^{2} - nz\overline{T}^{-1} + n_{0}(n - n_{0})\overline{T}^{-2} = 0$

and have no tangent line in common because $\{n_1, n - n_1\} \cap \{n_0, n - n_0\} = \emptyset$. Any reducible element of this pencil has tangent cone at s_0 given by $z^2 - nz\overline{T}^{-1} + m(n-m)\overline{T}^{-2} = 0$ for some integer $0 \le m \le n$. For a generic D it is given instead by $z^2 - nz\overline{T}^{-1} + a\overline{T}^{-2} = 0$ with an arbitrary coefficient $a \in \mathbb{C}$. Hence, it is irreducible for almost any a.

Proposition 28

Let $e: S^{\perp} \to S$ denote the blowing-up of τ_S 's fixed points $\{s_i, r_i\}, \tau_{S^{\perp}}: S^{\perp} \to S^{\perp}$ the pull-back of the involution τ_S and Γ_k^{\perp} the strict transform of Γ_k , for any $0 \le k \le 3$.

Then, the divisors $\Gamma_1^{\perp} + \Gamma_2^{\perp}$ and $\Gamma_0^{\perp} + \Gamma_3^{\perp}$ are $\tau_{S^{\perp}}$ -invariant and have the following properties:

- 1. they are linearly equivalent and do not intersect each other;
- 2. they generate a pencil of divisors with smooth irreducible generic term of genus $g := 2 + \sum_i \mu_i$.

Proof:

- 1. According to the adjunction formula, $\Gamma_1 + \Gamma_2$ and $\Gamma_0 + \Gamma_3$ have arithmetic genus 2n-1 and same multiplicities at all blown-up points $\{s_i, r_i\}$. Hence, their strict transforms remain linearly equivalent and have arithmetic genus $2n-1-1-\frac{1}{2}\sum_i(\gamma_i^2-\gamma_i)=2+\sum_i\mu_i$. A direct calculation also shows they no longer intersect.
- 2. The latter lemma also implies they generate a pencil with irreducible generic element, smooth according to Bertini's Theorem, and $\tau_{S^{\perp}}$ -invariant just as $\Gamma_1^{\perp} + \Gamma_2^{\perp}$ and $\Gamma_0^{\perp} + \Gamma_3^{\perp}$ are.

Corollary 29

For any $\mu \in \mathbb{N}^4$ as above and $0 \leq j < k \leq 3$ there exists a pencil of smooth hyperelliptic 2-tangential covers of degree $n := \sum_i \mu_i^2 + 2(\mu_j + \mu_k) + 3$ and genus $g := 2 + \sum_i \mu_i$.

Proof: Up to a common permutation of their coordinates we can assume α, β in the latter Theorem so chosen that the scalar product $\langle \mu, \alpha + \beta \rangle$ is equal to $2(\mu_j + \mu_k)$. For a generic Din the pencil generated by $\Gamma_1 + \Gamma_2$ and $\Gamma_0 + \Gamma_3$, $D^{\perp} \subset S^{\perp}$ is a smooth irreducible $\tau_{S^{\perp}}$ -invariant curve of genus $g := 2 + \sum_i \mu_i$. Restricting $\pi_S \circ e : S^{\perp} \to X$ and $\kappa_S \circ e : S^{\perp} \to \mathbb{P}^1$ to D^{\perp} equips it with the 2-marked projections $\pi : (D^{\perp}, e^{-1}(s_0)) \to X$ and $\kappa : (D^{\perp}, e^{-1}(s_0)) \to \mathbb{P}^1$.

Arguing as in the proof of Theorem 19 one can show that π is a smooth 2-tangential cover of type $\gamma := 2\mu + \alpha + \beta$. At last, it only remains to check that $\tau_{S^{\perp}} : D^{\perp} \to D^{\perp}$ has 2g + 2 fixed points, including $\{p_1, p_2\} := e^{-1}(s_0)$. It would then follow that $(D^{\perp}, \{p_1, p_2\})$ is a hyperelliptic curve marked at two Weierstrass points, but also that $h^0(D^{\perp}, \mathcal{O}_{D^{\perp}}(p_1 + p_2)) = 1$ because $g \geq 2$.

Recall that the $\tau_{\mathcal{S}}$ -invariant divisors $\Gamma_1 + \Gamma_2$ and $\Gamma_0 + \Gamma_3$ have singularities of same multiplicity at $\{s_0, r_0, \cdots, r_3\}$, but yet no common tangent line. Hence, D has ordinary singularities with $\tau_{\mathcal{S}}$ invariant tangent cones, implying that $\tau_{\mathcal{S}^{\perp}}$ inherits γ_i fixed points over each r_i . Adding $\{p_1, p_2\} := e^{-1}(s_0)$ they sum up to $2 + \sum_i \gamma_i = 6 + 2 \sum_i \mu_i = 2g + 2$ as requested.

Example 2

The Λ -periodic Weierstrass functions $\wp : \mathbb{C}/\Lambda \to \mathbb{P}^1$ and its derivative \wp' , satisfy the relation

$$\wp'^2 = 4\Pi_{j=1}^3(\wp - e_j) = 4\wp^3 - g_2\wp - g_3$$

where $e_j := \wp(\omega_j)$, the value of \wp at the half-period ω_j (j = 1, 2, 3). According to the latter corollary, the simplest family of hyperelliptic 2-tangential covers (i.e.: degree n = 4 and genus g = 3) is obtained by choosing $(\mu, \alpha, \beta) = ((1, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0))$, in which case the pencil is generated by the zero-divisors of the following symmetric 2-tangential polynomials:

$$(T^2 \cdot \wp + e_1)(T^2 \cdot \wp + e_2)$$
 and $T^4 + 3(e_3 - 2\wp)T^2 + 4\wp'T - 3(\wp - e_1)(\wp - e_2).$

The next simplest case (i.e.: genus g = 5 and degree n = 8) corresponds to $(\mu, \alpha, \beta) = ((1, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2))$ and the pencil generated by the 2-tangential polynomials:

$$\left(T^4 + 3(e_3 - 2\wp)T^2 + 4\wp'T - 3(\wp - e_1)(\wp - e_2)\right) \left(T^4 + 3(e_2 - 2\wp)T^2 + 4\wp'T - 3(\wp - e_1)(\wp - e_3)\right)$$

and

$$(T^2 - \wp + e_1) (T^6 - 15\wp T^4 + 20\wp' T^3 - \frac{9}{4} (20\wp^2 - 3g_2)T^2 + 12\wp \wp' T - \frac{5}{4} \wp'^2).$$

In order to obtain higher degree and genus examples one needs more τ_{S} -invariant curves associated to other cases $(\mu, \mu + \alpha, \mu + \beta, \mu + \alpha + \beta)$ as above. The latter can indeed be done by means of A.O.Smirnov's algorithm (cf.[6]). The corresponding 34 first polynomials have been presented with his permission in Bobenko-Enolskii's fine encyclopedic survey [3].

References

- Akhmetshin A.A., Krichever I.M. & Vol'vovskii Y.S., Elliptic families of solutions of the Kadomtsev-Petviashvili equation, and the field analog of the elliptic Calogero-Moser system, Funct. Anal. and its Appl., 36 n°4 (2002), 253-266.
- [2] O. Babelon, E. Billey, I.M. Krichever and M. Talon, Spin generalization of the Calogero-Moser system and the Matrix KP equation, Amer. Math. Soc. Transl. Series 2, vol. 170 (1995)
- [3] E. D. Belokolos and V. Z. Enolskii, Reduction of Abelian functions and algebraically integrable systems. II Journal of Math. Sci., Vol. 108, No. 3 (2002), 295-374.
- [4] I. M. Krichever, Integration of non-linear equations by the method of algebraic geometry, Funct. Anal. Appl. 11 (1977) n°1, 15-31.
- [5] I.M. Krichever, Elliptic solutions of the KP equation and integrable systems of particles, Funct. Anal. Appl. 14 (1980) n°4, 45-54.
- [6] A.O.Smirnov, Elliptic solitons of integrable non-linear equations, Dissertation, 171 pp. St.Petersburg (2000) (in russian).
- [7] A. Treibich, Tangential polynomials and Elliptic Solitons, Duke Math. J. vol. 59, (1989) n°3, 611-627.
- [8] A. Treibich, Matrix Elliptic Solitons, Duke Math. J. vol. 90 (1997) n°3, 523-547.
- [9] A. Treibich and J.L. Verdier, with an appendix by J. Œsterlé, Solitons Elliptiques, The Grothendieck Festschrift, III, Progr. in Math., 88, Ed: Birkhaüser-Boston (1990), 437-480.
- [10] A. Treibich and J.L. Verdier, Variétés de Kritchever des solitons elliptiques, Proc. of the Indo-French Conf. on Geometry (Bombay, Feb. 1989), Ed.: Hindustan book Agency, 187-232.