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1 Introduction

In the mid 1970’s, following earlier work by several people in former Soviet Union, I.M. Krichever
developed the Theory of scalar and vector Baker-Akhiezer functions. Given a d-marked compact
Riemann Surface (Γ, {p1, · · · , pd}) of genus g > 0, equipped with an effective divisor D of degree
(g+ d - 1), he constructed a meromorphic vector function ψD(x, y, t; p) : C3 × (Γ \ {pi})→ P1 and
two differential operators

L := ∂2
x + U(x, y, t) and M := ∂3

x +
3

2
U(x, y, t)∂x +W (x, y, t)

with d× d-matrix valued coefficients, satisfying the system of equations:{
(∂y -L)ψD = 0
(∂t -M)ψD = 0

The corresponding compatibility equation [∂y −L, ∂t−M ] = 0 is equivalent to the matrix KP
equation, a system of partial derivative equations satisfied by the d × d-matrix functions U and
W (cf. [4], p. 21-22 or [2] p. 86, 2.2 & 2.3).

Moreover, if there exists a meromorphic function f : Γ → P1, with a double pole at each pi,
the B-A function ψD satisfies the system ([4],3.5 p. 21-22).{

(L - f)ψD = 0
(∂t -M)ψD = 0

implying that U is independent of y and solves the simpler matrix Korteweg-deVries equation

(KdV ) Ut =
1

4
(3UUx + 3UxU + Uxxx)

On the other hand, the former matrix K solutions are doubly periodic in x, and called elliptic
KP solitons, if the spectral data satisfies the elliptic criterion presented in [5], Assertion p.289.

Both elliptic scalar cases plus the matrix KP one have been extensively studied (see [5] and
[2], as well as [3], [6], [1] and [7]-[10]) but, to our knowledge, the matrix KdV elliptic issue has
been left beside.

Given d > 0 and an elliptic curve (X, q) := (C/Λ, 0) our purpose in this article is manifold:
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1. to present simple polynomial equations defining spectral curves of matrix KP elliptic solitons;

2. to give an effective construction of the corresponding polynomials;

3. to deduce arbitrarily high genus spectral curves of matrix KdV elliptic solitons.

We proceed as follows :

Section 2: given any cover π : Γ→ X, marked at d points {p1, · · · , pd} of the fibre π-1(q) ⊂ Γ,
we identify X and the smooth subset of Γ with their canonical images in the Jacobian of Γ. We
call π d-tangential if the tangent to X at q is contained in

∑
i TΓ,pi , the subspace generated by

the tangents to Γ at the d points {pi}. Moreover, we call it hyperelliptic d-tangential if (Γ, {pi})
is a hyperelliptic curve marked at d Weierstrass points. We prove they give rise to d × d matrix
KP and KdV elliptic solitons respectively

Section 3: we associate to any such cover a d-tangential polynomial and a curve in a particular
ruled surface S → X, through which the cover factors. We give a recursive construction of all
d-tangential polynomials and deduce simple equations for a family of d-tangential covers already
considered in [2] (see also [8]).

Section 4: we construct all d-tangential polynomials in terms of the B-A function of (X, q).

Section 5: given any µ ∈ N4 satisfying µ◦ + 1 ≡ µj (mod2) for j = 1, 2, 3, we construct a
(3 +

∑
i µi)-dimensional family of 2× 2 matrix KdV elliptic solitons.

2 d-tangential covers and d× d matrix KP elliptic solitons

We fix hereafter a lattice Λ ⊂ C and a local coordinate, say z, at the origin of the elliptic curve
(X, q) := (C/Λ, 0). To any projection π : Γ→ X we associate the Abel embedding Γ→ JacΓ into
its generalized Jacobian and dual morphism π∗ : X → JacΓ, q′ 7→ OΓ

(
π∗(q′ - q)

)
. The tangent

space to Γ at any smooth point p, denoted TΓ,p, can therefore be identified with its image in
H1(Γ,OΓ), the tangent space to JacΓ at its origin. We will also let K(Γ) and K(X) denote the
corresponding fields of meromorphic functions.

Lemma 1 ([7], 1.4, p. 613)
Given any projection π : Γ → X, the derivative of its dual morphism π∗ : JacX → JacΓ

injects TX,q = H1(X,OX) into H1(Γ,OΓ).

Proof : The Albanese morphism Alb(π) : JacΓ → JacX, M 7→ det(π∗(M)) ⊗ det(π∗(OΓ))-1

composed with π∗ is the multiplication by deg(π). Hence Ker(π∗) is finite and d(π∗) injective. �

Definition 2
Let π : (Γ, {p1, · · · , pd})→ X be a projection marked at d points of the fibre π-1(q).

1. We will call π a d-tangential cover if and only if it satisfies the following conditions :

(a) d(π∗)(TX,q) ⊂
∑d
i=1 TΓ,pi ⊂ H1(Γ,OΓ);

(b) d(π∗)(TX,q) *
∑
i 6=j TΓ,pi for any 1 ≤ j ≤ d.
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2. If Γ is a hyperelliptic curve and any pi a Weierstrass point, we will say π is hyperelliptic
d-tangential. In the latter case there exists a unique involution, denoted τΓ : Γ → Γ, fixing
{pi} and with quotient curve isomorphic to P1.

Remark 1

1. The above condition 1(b) is equivalent to h0(Γ,OΓ(
∑
i pi)) = 1 and always true if d = 1.

Skipping it when d > 1 could give us superfluous marked points, meaning that π could be a
d′-tangential cover for some 1 ≤ d′ < d. This weaker notion still gives rise to d× d matrix
KP elliptic solitons as was shown in [2] (see also [1] and [8]-1.13).

2. The equality h0(Γ,OΓ(
∑
i pi)) = 1 is also true as long as Γ is a hyperelliptic curve of genus

g ≥ d and pi a Weierstrass point for any i = 1, · · · , d.

Theorem 3 (d-tangency criterion [8]-1.8)
A d-marked cover π : (Γ, {p1, · · · , pd})→ X is d-tangential if and only if h0(Γ,OΓ(

∑
i pi)) = 1,

{pi} ⊂ π-1(q) and there exists a morphism κ : Γ→ P1, called henceforth d-tangential, such that :

1. κ is holomorphic outside π-1(q);

2. over a neighbourhood of π-1(q), the divisor of poles of κ+ π∗( 1
z ) is equal to

∑
i pi.

Lemma 4 ([5] Assertion, p.289)
Let π : (Γ, {p1, · · · , pd}) → X be a d-tangential cover, equipped with a d-tangential function

κ : Γ→ P1 and a local coordinate at any pi, say λi, such that κ+ π∗( 1
z ) = 1

λi
+O(λi).

Then, for any ω ∈ Λ there exists a holomorphic function ϕω : Γ \ {pi} → C with the following
essential singularity at any pi :

ϕω(λi) = exp
( ω
λi

)
(1 +O(λi)).

Lemma 5
Let π : (Γ, {p1, · · · , pd})→ X be a hyperelliptic d-tangential cover. Then :

1. there exists a unique d-tangential function κ : Γ→ P1 satisfying κ ◦ τΓ = -κ ;

2. there exists a projection f : Γ→ P1 with pole divisor (f)∞ =
∑
i 2pi and same principal part

as
(
κ+ π∗( 1

z )
)2

at each Weierstrass point pi.

Proof :

1. Let κ : Γ → P1 be the unique d-tangential function, up to an additive constant. One can
first check that - τ∗Γ(κ) is also d-tangential and has same principal parts as κ at {pi}. Hence
κ+ τ∗Γ(κ) is constant, say c ∈ C. It follows that κ+ c

2 is τΓ-anti-invariant.

2. Pick any i = 1, · · · , d and let λi and fi : Γ → P1 denote, respectively, the τΓ-anti-invariant
local coordinate at pi such that κ + π∗( 1

z ) = 1
λi

and a degree-2 projection with principal

part 1
λ2
i

at pi. Then f :=
∑d
i=1 fi has the required properties.�

Theorem 6
Let π be a d-tangential cover equipped with data

(
κ, {(pi, λi})

)
as in Lemma 4. Then, the

corresponding d × d-matrix KP solutions are Λ-periodic in x. Analogously, if π is hyperelliptic
d-tangential we obtain a family of d× d-matrix KdV solutions Λ-periodic in x.
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Proof : Let g denote the arithmetic genus of Γ and choose, at each pi, a local coordinate λi
satisfying κ+π∗( 1

z ) = 1
λi

+O(λi). Given any (x, y, t) ∈ C3 and non-special degree d+g - 1 effective
divisor D, with support disjoint with {pi}, we will denote ψD(x, y, t) the vector Baker-Akhiezer
function associated to the data (Γ, {(pi, λi)}, D) (cf. [4]). It is the unique meromorphic function
on (Γ \ {pi}) such that:

1. its divisor of poles is bounded by D ;

2. in a neighbourhood of each pi it has an essential singularity of the following type

(9) ψD(x, y, t)(λi) = e
x
λi

+ y

λ2
i

+ t

λ3
i

(
~ei + ~ξi1(x, y, t)λi +O(λ2

i )
)
,

where ~ei ∈ Cd is the vector having a 1 at the i-th place and 0 everywhere else.

Recall also, or any ω ∈ Λ, the holomorphic function ϕω : Γ \ {pi} → C constructed in Lemma 4

and having the following essential singularity at each pi: ϕω(λi) = e
ω
λi (1 +O(λi)).

The uniqueness of ψD implies that for any ω ∈ Λ and (x, y, t) ∈ C3 we must have:

ψD(x+ ω, y, t) = ϕωψD(x, y, t).

Comparing their developments around pi we deduce that ~ξi1(x, y, t) is Λ-additive in x, i.e.:

∀i, ∀ω ∈ Λ,∃a ∈ C such that ∀x, y, t ∈ C, ~ξi1(x+ ω, y, t) = ~ξi1(x, y, t) + a~ei .

In particular the d× d matrix KP soliton

U(x, y, t) = −2
∂

∂x

(
~ξ1
1 · · · ~ξd1

)
associated to (Γ, {(p1, λ1), · · · , (pd, λd)}, D) is Λ-periodic with respect to x.

At last, if π is hyperelliptic d-tangential we choose a τΓ-anti-invariant d-tangential function
κ, local coordinates λi (i = 1, · · · , d) and a projection f :=

∑
i fi : Γ → P1 as in Lemma 5. In

the latter case eyf(p) is holomorphic outside the d marked points and has the following essential

singularity at each pi: e
yf(p) = e

y 1

λ2
i . We still get d × d matrix KP elliptic solitons but now ψD

also satisfies ψD(x, y, t) = ψD(x, 0, t)eyf as well as ∂yψD = fψD, implying that U = −2 ∂
∂x

(
~ξi1

)
is

independent of y and solves the KdV equation as explained in the Introduction. �

3 d-tangential covers and polynomials

Let z denote the canonical coordinate of X = C/Λ at its origin q = 0, and let U and U denote
U := X \ {q} and some neighbourhood of q. We start constructing a ruled surface through which
any d-tangential cover factors.

Definition 7

1. We define the ruled surface πS : S → X by glueing the fibers of P1 × U and P1 × U over
each q′ ∈ U ∩ U by means of a translation as follows :

∀q′ ∈ U ∩ U we identify (T , q′) ∈ P1 × U with (T - 1
z(q′) , q

′) ∈ P1 × U .
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2. The infinity sections q′ ∈ U 7→ (∞, q′) ∈ P1 × U and q′ ∈ U 7→ (∞, q′) ∈ P1 × U get glued
together defining a particular one denoted by Co ⊂ S.

3. Given any Q(T ) ∈ K(X)[T ], considered as a rational morphism P1 × U ⊂ S → P1, the
zero-divisors {Q(T ) = 0} ⊂ P1 × U and {Q(T - 1

z ) = 0} ⊂ P1 × U get glued over U ∩ U ,
defining one in S denoted DQ.

Remark 2
Choose (T -1, z) as couple of local coordinates at po := (∞, q) ∈ P1 × X and let p1 denote the
point infinitely near po corresponding to the tangent direction -1. By blowing up po, then p1, and
contracting the strict transform of P1 × {q}, we obtain a ruled surface isomorphic to S.

Proposition 8
Let κS : S → P1 correspond to the first projection T : P1 ×X → P1. Then :

1. the divisor of zeroes and poles of κS is equal to DT - (Co + Sq);

2. the restriction of κS + π∗S( 1
z ) to P1 × U has a simple pole along Co ;

3. Co has 0 self-intersection and KS , the canonical divisor of S, is linearly equivalent to -2Co.

Proof.

1. κS restricts over the open subsets P1×U and P1×U to T and T - 1
z , respectively. Hence, its

divisor of zeros and poles is DT - (Co + Sq).

2. It also follows that κS + π∗S( 1
z ) is given by T over P1 × U and has a simple pole along Co.

3. The section Co having genus 1, the adjunction formula gives 1 = 1 + 1
2Co.(-Co), implying

Co.Co = 0. The wedge products dT ∧ dz (on P1 × U) and dT ∧ dz (on P1 × U) get glued
over U ∩ U , defining a meromorphic differential with divisor class -2Co as announced. �

Lemma 9
Let π : (Γ, {pi})→ X be a d-tangential cover of degree n equipped with a d-tangential function

κ : Γ → P1. Then, its characteristic polynomial with respect to the degree-n algebraic extension
K(Γ)/π∗

(
K(X)

)
, say Pκ(T ) = Tn +

∑n
j=1 αj,κT

n-j ∈ K(X)[T ], has the following properties :

1. any coefficient αj,κ is holomorphic outside q and (αj,κ)∞ ≤ jq, i.e.: αj,κ ∈ H0
(
X,OX(jq)

)
;

2. all coefficients of zdPκ(T - 1
z ) =: zd Tn +

∑n
j=1 aj,κT

n-j are holomorphic at q;

3. aj,κ vanishes to order ≥ (d-j) at q for all j < d and there exists l ≥ d such that al,κ(q) 6= 0.

Proof

1. Up to a sign αj,κ is the j-th symmetric function of κ with respect to π. Recall also that κ
is holomorphic outside π-1(q) and has, at any point p ∈ π-1(q), a pole of order bounded by
indπ(p), the ramification index of π at p. Hence αj,κ is holomorphic outside q while having
at q a pole of order bounded by j.

2. Analogously, up to a sign aj,κz
-d is the j-th symmetric function of κ+π∗( 1

z ). The latter has
a simple pole at any marked point pi and is holomorphic elsewhere in π-1(q). Hence aj,κz

-d

must have a pole at q of order bounded by min{d, j}.

5



3. One can check that al,κz
-d has order d (at least) for l =

∑d
i=1 indπ(pi). In other words,

zdPκ(T - 1
z ) has the announced properties. �

Definition 10
A monic polynomial P (T ) = Tn +

∑n
j=1 αjT

n-j ∈ K(X)[T ] will be called d-tangential if and
only if it satisfies the following conditions :

1. ∀j = 1, · · · , n the function αj is holomorphic outside q and has a pole of order ≤ j at q;

2. all coefficients of zdP (T - 1
z ) =: zdTn +

∑n
j=1 ajT

n-j are holomorphic at q;

3. d is the least positive integer satisfying the above property (i.e.: ∃j ≤ n such that aj(0) 6= 0).

We will let θd,n(X, z) denote the subset of d-tangential polynomials of degree n. The affine
subspace cut out in K(X)[T ] by the first two conditions is the union Θd,n(X, z) := ∪di=1θi,n(X, z).

Example 1
Let ℘ ∈ K(X) denote the unique meromorphic function with a double pole at q and local

development ℘(z) = 1
z2 + O(z2), and ℘′ its derivative. Then P (T ) = T 3 - 3℘T + ℘′ + b℘ belongs

to θ2,3(X, z) for any b 6= 0, and R(T ) = T 3- (2c+ 1)℘T + c℘′ belongs to θ2,3(X, z) for any c 6= 1.

One can also check that for any d, n ∈ N∗, Θd,d(X, z) = T d +
∑d
j=1 H0

(
X,OX(jq)

)
T d-j and

dimΘd,d(X, z) =
∑d
j=1 j = 1

2d(d+ 1) while Θ0,n(X, z) is empty.

Lemma 11
Let ∆,∆-1 : K(X)[T ]→ K(X)[T ] denote the K(X)-lineal morphisms such that

∀m ≥ 0, ∆(Tm) = mTm-1 and ∆-1(Tm) =
1

m+ 1
Tm+1.

For any P ∈ K(X)[T ] they satisfy :

1. ∆ ◦∆-1(P ) = P and ∆-1 ◦∆(P ) = P -P (0);

2. ∀n > d, P ∈ Θd,n(X, z) implies 1
n∆(P ) ∈ Θd,n-1(X, z);

3. if Θd,n(X, z) 6= ∅ the map 1
n∆ : Θd,n(X, z)→ Θd,n-1(X, z) has kernel H0

(
X,OX(dq)

)
.

Theorem 12 - Recursive formula

For any 0 < d < j ≤ n and P ∈ Θd,j-1(X, z) there exists α ∈ H0
(
X,OX(jq)

)
, unique modulo

H0
(
X,OX(dq)

)
, such that j∆-1(P ) + α belongs to Θd,j(X, z). It follows that Θd,n(X, z) is not

empty and has dimension (n - d)d+ dim
(
Θd,d(X, z)

)
= (n - d)d+ 1

2d(d+ 1) = nd - 1
2d(d - 1).

Proof: The function j∆-1(P )( 1
z ) has a pole of order j at q, because j∆-1(P ) ∈ K(X)[T ]

is monic of degree j. Hence, there exists α ∈ H0
(
X,OX(jq)

)
such that zd

(
α + j∆-1(P )( 1

z )
)

is
holomorphic at q, implying that j∆-1(P ) + α ∈ Θd,j(X, z), as well as the other properties. �

Lemma 13 - Reducibility criterion
The subset ⋃

θd′,n′(X, z)θd-d′,n-n′(X, z) ⊂ θd,n(X, z),

with the union taken over all d′, n′ such that 0 < d′ < d and 0 < n′ < n, contains all reducible
elements. In other words P ∈ θd,n(X, z) is reducible in K(X)[T ] if and only if it factors as
P = QR, with Q ∈ θd′,n′(X, z) and R ∈ θd-d′,n-n′(X, z) for some 0 < d ′ < d and 0 < n′ < n.
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Proof : If P ∈ θd,n(X, z) is reducible we can assume it factors as as product P = QR of two
monic polynomials with coefficients holomorphic outside q ∈ X. A straightforward verification
confirms they must satisfy property 11.1) above, as well as 11.2) for some d′, d′′ ∈ N∗. In partic-
ular all coefficients of zd

′+d′′P (T - 1
z ) = zd

′
Q(T - 1

z )zd
′′
R(T - 1

z ) must be holomorphic at q and its
restriction to z = 0 can not vanish, implying d′ + d′′ = d as asserted. �

Theorem 14
For any 1 ≤ d ≤ n θd,n(X, z) is an open dense subset of Θd,n(X, z), with irreducible generic

element.

Proof : The complement of θd,n(X, z) ⊂ Θd,n(X, z) is the affine subspace Θd -1,n(X, z), which
has positive codimension (equal to n - d+ 1). Hence, dim

(
θd,n(X, z)

)
= nd - 1

2d(d - 1), bigger than
the dimension of the reducible ones, and its generic element must be irreducible. �

Remark 3
For any P (T ) ∈ Θd,n(X, z) the coefficients of zdP (T - 1

z ) = zdTn +
∑n
j=1 ajT

n-j are holomor-

phic at q. We also know that aj(z) = zd-jbj(z), for any j = 1, · · · , d, with bj holomorphic at q
and b1 = -n (cf. proof of Lemma 9.3)). Thus, we are naturally lead to the following definitions.

Definition 15
To any P (T ) ∈ Θd,n(X, z) we associate

Vd(P ) := zdP (T -
1

z
)|z=0 =

n∑
j=d

aj(0)Tn-j as well as Md(P ) := wd -nwd-1 +

d∑
j=2

bj(0)wd-j

and let
Vd : Θd,n(X, z)→ Cn-d [T ] and Md : Θd,n(X, z)→ Cd [w ]

denote the corresponding (affine) linear maps.

Lemma 16
For any 1 ≤ d ≤ n and generic P ∈ θd,n(X, z) ⊂ Θd,n(X, z) :

1. Vd : Θd,n(X, z)→ Cn- d [T ] is surjective with kernel Θd-1,n(X, z);

2. Vd(P ) has degree n- d and only simple roots ;

3. d!
n!∆

◦(n- d) : Θd,n(X, z)→ Θd,d(X, z) is surjective ;

4. Md(P ) has d simple non-zero roots.

Proof :

1. The first item implies the second one and can be proved by induction on n. Let us indeed
assume Vd : Θd,n-1(X, z) → Cn-1-d [T ] is surjective. The result follows by coupling the
surjectivity of ∆ := ∂T with the fact that it commutes with Vd.

2. According to Lemma 11 and Theorem 12 the linear map 1
j∆ : Θd,j(X, z) → Θd,j-1(X, z) is

surjective for any d < j ≤ n, and d!
n!∆

◦(n-d) : Θd,n(X, z)→ Θd,d(X, z) as well.

3. Pick any Po ∈ Θd,n(X, z) such that d!
n!∆

n-d(Po) = T d. Then one can check that Md(Po) =

wd +
∑d
j=1(-1)j(nj )wd-j , which has d simple non-zero roots. The latter property being an

open one the result follows. �
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Remark 4
Given any P ∈ θd,n(X, z) ⊂ K(X)[T ] we will consider its zero-divisor DP ⊂ S (see Definition

8.3)) and let e : D̂P ⊂ Ŝ → DP ⊂ S denote its strict transform by the blowing up of pS ∈ S. It
comes with projections π := πS ◦ e : D̂P → X and κ := κS ◦ e : D̂P → P1.

Lemma 17
The zero-divisor DP ⊂ S of any P ∈ θd,n(X, z) has the following local and global properties :

1. DP is defined on the open subset P1 × (X \ {q}) ⊂ S by the equation P (T, z) = 0;

2. DP is defined over a neighbourhood of pS ∈ S by the equation zdT
-n
P (T - 1

z , z) = 0;

3. DP ∩ Co = {pS} and DP ∩ Sq = {pS} ∪ {(T , q), Vd(P )(T ) = 0};

4. its tangent cone at pS is defined by the equation T
- d
Md(P )(zT ) = 0;

5. DP is linearly equivalent to nCo + dSq.

Proof : 1), 2) and 3) - The first two items follow from the construction of S (cf. Remark
3.2)), while the third one from the definition of θd,n(X, z).

4) - Over a neighbourhood of π-1(q), κ+ π∗( 1
z ) has pole-divisor equal to

∑
i pi, and characteristic

polynomial with respect to π equal to Pκ(T - 1
z ) =: T

n
+
∑n
j=1 cj,κT

n-j
. Up to a sign, its coefficients

are the symmetric functions of κ+ π∗( 1
z ) with respect to π and satisfy:

cj,κ =
1

zj
O(1) for any 1 ≤ j ≤ d (resp.: cj,κ =

1

zd
O(1) for any d ≤ j ≤ n).

On the other hand DP is given over a neighbourhood of pS ∈ S as zero-divisor of

T
-n
zdPκ(T -

1

z
) =: zd +

n∑
j=1

zdcj,κT
-j

= zd +

d∑
j=1

zjcj,κz
d-jT

-j
+

n∑
j>d

zdcj,κT
-j
.

Hence, its tangent cone at pS is given by the equation zd +
∑d
j=1(zjcj,κ)|z=0z

d-jT
-j

= 0 and
the assertion follows.

5) - Once we know that DP ∩Co = {pS} and DP has a singularity of multiplicity d at pS transverse
to Co, we deduce DP .Co = d and DP .Sq = n implying DP ∈ |nCo + dSq|. �

Proposition 18
For any 1 ≤ d ≤ n and generic P ∈ θd,n(X, z) :

1. DP has an ordinary singularity at pS , of multiplicity d and transverse to Co + Sq;

2. DP is irreducible, smooth outside pS and of arithmetic genus nd+ 1 - d.

Proof

1. The tangent cone of DP at pS is the zero-locus of the degree-d form T
- d
Md(P )(zT ). For

generic P it is the union of d lines transverse to Co + Sq.
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2. According to the preceding results KS = - 2Co, the generic P ∈ θd,n(X, z) is irreducible and
DP ∈ |nCo + dSq|. We deduce its arithmetic genus via the adjunction formula. Forcing DP

to be smooth at every point in Sq \ {pS} or outside Sq are open conditions on θd,n(X, z).
The first one is true as soon as Vd(P ) has n - d simple roots. As for the second one, one can
check that for almost any a ∈ C the divisor DP+a is smooth outside Sq. �

Theorem 19
For any 1 ≤ d < n and generic P ∈ θd,n(X, z) as above :

1. π : D̂P → X is non-ramified at the d pre-images e-1(pS) ⊂ π-1(q) ;

2. D̂P is smooth of genus nd - 1
2d(d+ 1) + 1;

3. κ is holomorphic outside π-1(q) and κ+ π∗( 1
z ) has simple poles at e-1(pS);

4. π : (D̂P , e
-1(pS))→ X is a d-tangential cover.

Proof: The first three items follow immediately from the preceding properties. As for the fourth
one, assume that generically h0(D̂P ,OD̂P (

∑
i pi)) > 1 and recall the relation :

dim
(
Θd,n(X, z)

)
- dim

(
Θd-1,n(X, z)

)
= n - d+ 1 ≥ 2.

Then, for any non constant h ∈ H0(D̂P ,OD̂P (
∑
i pi)) there exists at least one λ ∈ C such that

κ + λh + π∗( 1
z ) has less than d poles. Hence, the characteristic polynomials of {κ + λh, λ ∈ C}

define a 1-dimensional family in Θd,n(X, z) intersecting Θd-1,n(X, z) =
⋃d -1
j=1 θj,n(X, z).

In particular, dim
(
Θd,n(X, z)

)
should be bounded by dim

(
Θd-1,n(X, z)

)
+ 1. Contradiction!.

�

Corollary 20 ([2], p.288; see also [8], p.546)
For any n > d ≥ 1 there exists a family of dimension 1

2d(2n - d + 1), of smooth d-tangential
covers of degree n over (X, q) and genus 1

2d(2n - d+ 1) - (d -1). They give rise to a (2nd+ 1 - d2)-
dimensional family of d× d matrix KP elliptic solitons.

4 d-tangential polynomials in terms of the B-A function

Building upon classical properties of the Weierstrass Sigma and Zeta functions, σ(z) and ζ(z) :=
∂
∂z lnσ(z) (e.g.: [5] p. 283), it can be proved that for any x ∈ C the Baker-Akhiezer func-

tion ψq(x)(z) := exζ(z) σ(z - x)
σ(z) is well defined on X and holomorphic outside q, where it has the

local development ψq(x)(z) = e
x
z

1
zO(1). Once x is formally replaced by ∆ := ∂T in its Maclau-

rin development, it defines a linear application ψq(∆)(z) : C[T ] → K(X)[T ]. Given the fact

that e−
∆
z (P (T )) = P (T - 1

z ) for any P (T ) ∈ K(X)[T ], the outcome is an isomorphism be-
tween the subspaces Mn ⊂ C[T ] of degree-n monic polynomials and the 1-tangential polynomials
Θ1,n(X, z) ⊂ K(X)[T ] for any n (cf. [7]). In order to prove analogous characterizations for any
n > d ≥ 1, we will need the following properties of ψq(x)(z) and its k-th partial derivatives as
functions of the parameter x.

Lemma 21
The Maclaurin development in x of F (x, z) := σ(z-x) and ψ(x, z) := ψq(x)(z) satisfy :

1. ψ(x, z) := 1 +
∑∞
m=2 αmx

m, with αm meromorphic on X;

9



2. for any m ≥ 2 the coefficient αm has pole-divisor (αm)∞ = mq and

zmαm|z=0 =
1-m

m!
;

3. for any m ≥ 1 the m-th partial derivative ψ(m) := ∂mx ψ(x, z) is equal to

ψ(m) =
exζ(z)

m!F (0, z)

( m∑
j=0

(mj )ζm-j∂jxF
)

= m!αm +O(x)

and satisfies:

(a) zm+1e-
x
z ψ(m) =

∑∞
j=0 βjx

j has all its coefficients holomorphic at q;

(b) its restriction to z = 0 satisfies zm+1e-
x
z ψ

(m)
|z=0 = - x

m!

(
1 +O(x)

)
.

Proof: 1) - Developping ψ(x, z) := exζ F (x,z)
F (0,z) =

(
1+
∑∞
j=1

1
j!ζ

jxj
)(

1+
∑∞
i=1

∂ixF
F (0, z)xi

)
with

respect to x we obtain the following formula:

m!αm = ζm +

m∑
k=1

(mk )ζm - k ∂
k
xF

F
(0, z).

2) - For any m ≥ 2 a direct calculation gives zmm!αm(z) = 1 -m+O(z). Hence (αm)∞ = mq.

3) - Recall that zζ(z), ζ(z) - 1
z and z

F (0,z) = z
σ(z) are holomorphic in a neighbourhood of q,

with values at q equal to 1, 0 and 1 respectively. Hence the Maclaurin development in x of

zm+1e- xz ψ(m) =
ex(ζ - 1

z )

m!

z

F (0, z)

( m∑
j=0

(mj )(zζ)m-jzj∂jxF
)

has all its coefficients holomorphic at q. It also follows that its restriction to z = 0 is equal to
1
m!F (x, 0), and therefore to - x

m!

(
1 +O(x)

)
. �

Theorem 22
For any n ≥ 1 the linear map ψ := ψ(∆, z) : C[T ] → K(X)[T ] restricts to an isomorphism

from Mn onto θ1,n(X, z) = Θ1,n(X, z) (i.e.: Θ1,n(X, z) = ψ(Mn)). Moreover, for any n ≥ d > 1 :

Θd,n(X, z) = ψ(Mn)⊕
d - 1⊕
k=1

ψ(k)(TCn-1-k[T ]).

5 d-tangential polynomials and matrix KdV elliptic solitons

At last we consider the canonical involution [ -1] : (X, q) → (X, q), fixing ωo := q as well as the
three other half-periods {ωj , j = 1, 2, 3} and satisfying : [ -1]∗(z) = -z.

Recall also that given a hyperelliptic curve Γ there exists a unique involution τΓ : Γ→ Γ such
that the quotient curve is isomorphic to P1. Its fixed points are the so-called Weierstrass points.

We gather hereafter the first basic definitions and results concerning hyperelliptic d-tangential
covers (cf. [9] 4.1 p.457 and Definition 3.2)).
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Definition 23
We let τS : S → S denote the involution defined by (T, z) 7→ (-T, -z) and (T , z) 7→ (-T , -z)

over each trivialization of πS (see Definition 8.1)). It satisfies πS ◦ τS = [ -1] ◦ πS and has two
fixed points over each half-period ωi : one in Co, denoted by si, and the other one denoted by ri
(i = 0, .., 3). In particular s◦ = pS := C◦ ∩ Sq.

Proposition 24 ([8] 2.5)
Any degree-n hyperelliptic d-tangential cover π : (Γ, {p1, · · · , pd})→ X has unique d-tangential

function κ : Γ→ P1 and associated morphism ι : Γ→ S such that:

1. κ ◦ τΓ = -κ and its characteristic polynomial satisfies Pκ(-T, -z) = (-1)nPκ(T, z);

2. π factors as π = πS ◦ ι, with ι(Γ) = DPκ , the zero-divisor of Pκ(T ) (see Definition 7.3)) ;

3. ι ◦ τΓ = τS ◦ ι, hence ι(Γ) is τS-invariant and π ◦ τΓ = [ -1] ◦ π ;

4. ι-1(s0) = {p1, · · · , pd} while ∪3
i=0ι

-1(ri) is made of all other Weierstrass points.

Definition 25

1. We say that a τS-invariant effective divisor D of S has type (γi) ∈ N4 if and only if γi is
the multiplicity of D at ri for any i = 0, · · · , 3.

2. For any n ≥ d ≥ 1 we let Θτ
d,n(X, z) ⊂ Θd,n(X, z) denote the affine subspace of so-called

symmetric d-tangential polynomials P (T, z) such that P (-T, -z) = (-1)nP (T, z).

Theorem 26 (cf. [9] 6.2)

For any µ := (µi) ∈ N4 satisfying µ0 + 1 ≡ µ1 ≡ µ2 ≡ µ3(mod 2) and n ∈ N such that
2n+ 1 =

∑
i µi there exists a unique τS-invariant irreducible curve of type µ in |nCo + Sq|.

Lemma 27
Fix µ := (µi) ∈ N4 satisfying µ0 + 1 ≡ µ1 ≡ µ2 ≡ µ3(mod 2) and choose α, β ∈ N4 equal, up to

a common permutation of their coordinates, to (2, 0, 0, 0) and (0, 2, 0, 0). We then denote:

1. µ(0), µ(1), µ(2), µ(3) ∈ N4 the integer vectors µ, µ+ α, µ+ β and µ+ α+ β;

2. ni such that 2ni + 1 =
∑3
j=0

(
µ

(i)
j

)2
for any i = 0, · · · , 3;

3. n the common value n := n1 + n2 = n0 + n3 and γ := µ(1) + µ(2) = µ(0) + µ(3) ∈ N4;

4. Γi ∈ |niCo + Sq| the unique τS-invariant curve of type µ(i), for any i = 0, · · · , 3.

Then, any element D of the pencil generated by the divisors Γ1 + Γ2 and Γ0 + Γ3 satisfies :

1. D is τS-invariant, has type γ and belongs to the linear system |nCo + 2Sq| ;

2. generically, D is irreducible and has an ordinary singularity of multiplicity 2 at s0.

Proof: Let us only prove the last assertion. The tangent cones of Γ1 + Γ2 and Γ0 + Γ3 at s0

are given by the equations

z2-nzT
- 1

+ n1(n -n1)T
- 2

= 0 and z2-nzT
- 1

+ n0(n -n0)T
- 2

= 0

and have no tangent line in common because {n1, n -n1}∩{n0, n -n0} = ∅. Any reducible element

of this pencil has tangent cone at s0 given by z2-nzT
- 1

+ m(n -m)T
- 2

= 0 for some integer

0 ≤ m ≤ n. For a generic D it is given instead by z2-nzT
- 1

+ aT
- 2

= 0 with an arbitrary
coefficient a ∈ C. Hence, it is irreducible for almost any a. �
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Proposition 28
Let e : S⊥ → S denote the blowing-up of τS ’s fixed points {si, ri}, τS⊥ : S⊥ → S⊥ the pull-back

of the involution τS and Γ⊥k the strict transform of Γk, for any 0 ≤ k ≤ 3.
Then, the divisors Γ⊥1 + Γ⊥2 and Γ⊥0 + Γ⊥3 are τS⊥-invariant and have the following properties :

1. they are linearly equivalent and do not intersect each other ;

2. they generate a pencil of divisors with smooth irreducible generic term of genus g := 2+
∑
i µi.

Proof:

1. According to the adjunction formula, Γ1 + Γ2 and Γ0 + Γ3 have arithmetic genus 2n - 1 and
same multiplicities at all blown-up points {si, ri}. Hence, their strict transforms remain
linearly equivalent and have arithmetic genus 2n - 1 - 1 - 1

2

∑
i(γ

2
i - γi) = 2 +

∑
i µi. A direct

calculation also shows they no longer intersect.

2. The latter lemma also implies they generate a pencil with irreducible generic element, smooth
according to Bertini’s Theorem, and τS⊥ -invariant just as Γ⊥1 + Γ⊥2 and Γ⊥0 + Γ⊥3 are. �

Corollary 29
For any µ ∈ N4 as above and 0 ≤ j < k ≤ 3 there exists a pencil of smooth hyperelliptic

2-tangential covers of degree n :=
∑
i µ

2
i + 2(µj + µk) + 3 and genus g := 2 +

∑
i µi.

Proof: Up to a common permutation of their coordinates we can assume α, β in the latter
Theorem so chosen that the scalar product < µ,α+ β > is equal to 2(µj + µk). For a generic D
in the pencil generated by Γ1 + Γ2 and Γ0 + Γ3, D⊥ ⊂ S⊥ is a smooth irreducible τS⊥ -invariant
curve of genus g := 2 +

∑
i µi. Restricting πS ◦ e : S⊥ → X and κS ◦ e : S⊥ → P1 to D⊥ equips it

with the 2-marked projections π :
(
D⊥, e -1(s0)

)
→ X and κ :

(
D⊥, e -1(s0)

)
→ P1.

Arguing as in the proof of Theorem 19 one can show that π is a smooth 2-tangential cover of
type γ := 2µ + α + β. At last, it only remains to check that τS⊥ : D⊥ → D⊥ has 2g + 2 fixed
points, including {p1, p2} := e -1(s0). It would then follow that (D⊥, {p1, p2}) is a hyperelliptic
curve marked at two Weierstrass points, but also that h0

(
D⊥,OD⊥(p1 + p2)

)
= 1 because g ≥ 2.

Recall that the τS -invariant divisors Γ1 +Γ2 and Γ0 +Γ3 have singularities of same multiplicity
at {s0, r0, · · · , r3}, but yet no common tangent line. Hence, D has ordinary singularities with τS -
invariant tangent cones, implying that τS⊥ inherits γi fixed points over each ri. Adding {p1, p2} :=
e -1(s0) they sum up to 2 +

∑
i γi = 6 + 2

∑
i µi = 2g + 2 as requested. �

Example 2
The Λ-periodic Weierstrass functions ℘ : C/Λ→ P1 and its derivative ℘′, satisfy the relation

℘′2 = 4Π3
j=1(℘ - ej) = 4℘3 - g2℘ - g3

where ej := ℘(ωj), the value of ℘ at the half-period ωj (j = 1, 2, 3). According to the latter
corollary, the simplest family of hyperelliptic 2-tangential covers (i.e.: degree n = 4 and genus
g = 3) is obtained by choosing (µ, α, β) =

(
(1, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0)

)
, in which case the

pencil is generated by the zero-divisors of the following symmetric 2-tangential polynomials :

(T 2-℘+ e1)(T 2-℘+ e2) and T 4 + 3(e3 - 2℘)T 2 + 4℘′T - 3(℘ - e1)(℘ - e2).

The next simplest case (i.e.: genus g = 5 and degree n = 8) corresponds to (µ, α, β) =(
(1, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2)

)
and the pencil generated by the 2-tangential polynomials :

(
T 4 + 3(e3 - 2℘)T 2 + 4℘′T - 3(℘ - e1)(℘ - e2)

)(
T 4 + 3(e2 - 2℘)T 2 + 4℘′T - 3(℘ - e1)(℘ - e3)

)
12



and (
T 2-℘+ e1

)(
T 6 - 15℘T 4 + 20℘′T 3 -

9

4
(20℘2 - 3g2)T 2 + 12℘℘′T -

5

4
℘′2
)
.

In order to obtain higher degree and genus examples one needs more τS-invariant curves asso-
ciated to other cases (µ, µ+α, µ+β, µ+α+β) as above. The latter can indeed be done by means
of A.O.Smirnov’s algorithm (cf.[6]). The corresponding 34 first polynomials have been presented
with his permission in Bobenko-Enolskii’s fine encyclopedic survey [3].
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