
FULL DEMANDS OPTIMAL FRP-MORNDP SOLUTIONS

OVER A CYCLE.

EDUARDO A. CANALE AND CLAUDIO E. RISSO

Abstract. The frp-morndp problem consists in finding a resilient and cost-optimal

logical network, to be deployed over an existing optical infrastructure. This problem

was first introduced in Risso (2010, Master’s Thesis) for a specific application, and it

was generalized later in his Doctoral Thesis, where it was proved that it is NP-Hard.

In the middle, Almear et al (2011, degree project in Computer Engineering) found

optimal numerical solutions for a subset within a particular family of instances. In

this work we prove the correctness of those computer-aided constructions, although

using purely analytical arguments. Furthermore, we present solutions over a wider set

of instances for a higher number of nodes. These proofs are based in a quite tight new

theoretical lower bound for the cost of the optimum. Besides, we give new examples

to the converse of a necessary condition proved in Risso (2014 PhD’s Thesis).

1. Introduction

In [4], a new optimization problem concerning with networks in modern communica-

tion system is introduced. It was called Free Routing Protection Multi-Overlay Resilient

Network Design Problem, or frp-morndp for short. For having a historical and techni-

cal perspective of this problem we invite the reader to overview [3]. Besides of thoroughly

presenting the problem, this work proves that frp-morndp is in the class of NP-Hard

problems, which means that no efficient algorithm to solve it is known, and the prospec-

tive to find one in the near future is unlikely.

Due to the complexity of the problem, heuristic approaches like those developed in

[3] are in general necessary for finding solutions. Conversely, finding optimal solutions

analytically is achievable for some particular families of topologies, as is presented in

[2]. There are also some computer-aided solutions like those found in [1], for networks

with n = 4, . . . , 8 nodes and maximum capacity bB̄ = (3− n+ 2bn/2c), . . . , dn/2ebn/2c.

These particular solutions are:
1
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bB̄ = 3 bB̄ = 4

n = 4

bB̄ ∈ {2, 3} bB̄ ∈ {4, 5} bB̄ = 6

n = 5

bB̄ ∈ {3, 4} bB̄ ∈ {5, 6, 7} bB̄ = 8 bB̄ = 9

n = 6

bB̄ = 2 bB̄ = 3 bB̄ ∈ {4, 5} bB̄ ∈ {6, 7, 8, 9} bB̄ = 10 bB̄ = 11 bB̄ = 12

n = 7

bB̄ = 3 bB̄ = 4 bB̄ = 5 bB̄ = 7 bB̄ ∈ {8, 9, 10, 11} bB̄ ∈ {12, 15} bB̄ = 16

n = 8

Figure 1. Numerical solutions found in [1] for different n’s and bB̄’s.

The correctness of such constructions relies on the software used, which is prone to

contain bugs, while in many cases the computer spends days making its calculations,

turning then unfeasible a manual verification.

In this work we analytically prove the optimality of the solutions shown in Figure 1.

Additionally, we present an infinite family that includes new optimal networks for the

previous set of parameters. We verified their optimality twice, by hand and by computer

search. Conversely to what happens for the computer-aided constructions presented in

the Figure 1, those constructions presented along this article are verifiable by hand.

As we shall detail later on this article, there are many parameters to set up before

constituting an instance to the frp-morndp problem. They are: the potential topology

for the logical network, the topology of an existing optical network (including the lengths

of its links), the set of available capacities to dimension the logical links, the per-distance

cost associated to each capacity, and the traffic demands to satisfy between each pair

of logical nodes. This work tackles down the problem for the family of instances where

physical topologies have a cycle structure, which is not only theoretically important
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but practical, since cycles (aka rings) are the basic building blocks of optical networks

formerly designed to fulfill TDM transport requirements.

Under these premisses and following the scheme of [2, 3, 1], our aim is on parameters

n (number of nodes of the graphs) and bB̄ (maximum capacity to dimension logical links)

that are here supposed to be unique, leaving: demands, lengths and per-distance cost,

as parameters of a second order of importance.

By using bounds for traffic and capacity we prove the optimality for such construc-

tions. In general, the previous technique allows us to prove the optimality for most

cases, but for a handful of singularities where ad-hoc arguments are used. Besides, for

some instances alternate constructions are found, while under some premisses, families

of solutions with an infinite number of member are introduced.

This article is organized as follows. In Section 2 we present basic definitions of graphs

theory concerning to the frp-morndp problem. In Section 3 we introduce a general

lower bound for the cost of the optimal solution. We show three ad–hoc lower bound for

cases n = 4, 5, 7 and bB̄ = 3, and we present a stronger version of a necessary condition

proved in [3]. In Section 4, we define an infinite family of graphs which contains new

optimal networks. Besides, we present two new optimal networks for n = 10, bB̄ = 5 and

for n = 25, bB̄ = 6, which do not belong to the infinite family previously defined, but

arise from them by small modifications. In the same section, we describe the algorithms

used to check the feasibility of the solutions. Finally, in Section 5, we present a new

counterexample to the converse of a necessary condition proved in [3], which improves the

former because it considers a full demand network rather than an artificial construction.

2. Basic Definitions

If A is a set, then |A| denotes its cardinal and Ac its complement. The set of subset

of A with cardinal k is denoted
(
A
k

)
, i.e.

(
A
k

)
= {S ⊂ A : |S| = k}.

A (undirected simple) graph G = (V,E) consists in a non empty set of vertex or nodes

V = V (G) and a set of edges E = E(G) such that E ⊂
(
V
2

)
. If {v, w} ∈ E then we say

that v and w are adjacent. If ∅ 6= V1 ⊂ V , the graph induced by V1 in G is defined by

G[V1] =
(
V1,
(
V1

2

)
∩
(
V
2

))
.
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In this work we will extensively consider the complete graph Kn = (Zn,
(Zn

2

)
) and the

cycle Cn = (Zn, {{i, i+ 1} : i ∈ Zn}), where Zn are the integer modulo n and the sums

are take in Zn.

If the graph has capacities b : E → B ⊂ R and demands given by a |V | × |V | matrix

D = ((dv w)) over the vertex set V , we say that the graph satisfies the demands if there

is a set of paths R (aka routing map), such that for each v, w ∈ V there exists a path

Pv,w ∈ R joining v and w, and such that:

∀e ∈ E
∑

vw:e∈Pv,w

dv w ≤ b(e).

Given two non empty subsets of vertices V1, V2 ⊂ V (G), we denote by [V1, V2] to the set

of edges of G with one end in V1 and the other one in V2. A edge cut is a subset of edges

of the form [V1, V̄1]. A minimal edge-cut is called bond. The degree dG(v) of a vertex v

is the cardinal of [{v}, {v}c], i.e. dG(v) = |[{v}, {v}c)]. A graph is disconnected if it has

an empty bond. A graph is connected if it is not disconnected. It is easy to verify that

[V1, V
c

1 ] is a bond iff the graphs induced by V1 and V c
1 are connected.

2.1. Definitions concerned with the frp-morndp problem. The input of the frp-

morndp problem consists in a “physical” graph GP = (V,E) with lengths ` : E → C ⊂

R+ assigned to its edges, a matrix D = ((du v)) of positive demands over the vertex set

V and a set of possible capacities or bit-rates B ⊂ R+, a per-distance cost c : B → R+

such that b′ < b′′ implies c(b′)/b′ > c(b′′)/b′′ (economies of scale). A feasible solution of

frp-morndp consists in:

• a graph GL = (V,EL), called logical network together with an assignment of

capacities b : EL → B and,

• a “routing” map ρ : EL → G∗P that maps each edge e = vw ∈ EL to a path

ρ(e) of GP , called lightpath, with ends at v and w, such that for each “fault” of

a physical edge f ∈ EP , the “remaining” graph GL \ {e : f ∈ ρ(e)} can satisfy

the demands given by D.

If the cost of a ligthpath ρ(e) is its per-distance cost times its length, i.e.

c(ρ(e)) =
∑
f∈ρ(e)

c(b(e))`(f),
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then the cost of a solution GL is given by c(GL) =
∑

e∈EL
c(ρ(e)).

The frp-morndp problem consists in minimizing c(GL) over all feasible solu-

tions GL. The frp-morndp problem is NP-Hard as is proved in [3]. Even the subprob-

lem of verifying whether a logical network satisfies the demands is NP-Hard, thus only

heuristics algorithms are designed in [3] to find good quality solutions for a general case.

However, for particular families of graphs, the exact solution is known. For instance, if

GP = Cn, dv w = 1 for all v 6= w, B = {2} and n odd, we proved that the optimal GL

is the complete graph with ρ being the path with the fewer number of edges (see [2]),

no matter what c and ` are. Also in [2], if n > 4 is even, we have proved that there is

no feasible solution for B = {2} but there are for B = {3}. In [1], ILOG CPLEX v12.1

was used to find exact solutions for instances where GP = Cn, dv w = 1 for all v 6= w,

|B| = 1 and n = 4, 5, 6, 7, 8. However, except for those cases falling back in the theorem

proved in [2], the optimality of the other solutions depends on the correctness of the

software used. In this work we prove that those constructions of Figure 1 are optimal,

provided their feasibility, which can be verified by hand, by giving a routing map for

each fault scenario. To prove their optimality, we will check out how these constructions

fit to theoretical limits.

3. Lower bounds

In this section we are introducing some lower bounds for the cost of the optimal

solution, which will allow us to prove the optimality of the solutions shown in Figure 1.

In order to obtain a lower bound, we recall a result proved in [3][Lemma 5]. This result

is a necessary condition for the feasibility of a solution to frp-morndp, which states:

Lemma 1. Given any solution GL to frp-morndp. In order for this solution to be

feasible, it must be hold that for every edge-cut bP = [S, Sc] of GP , then the condition:

(1)
∑

v∈S,w∈Sc

dvw ≤ bB̄
⌊
|bL|(|bP | − 1)

|bP |

⌋

must be satisfied, where bB̄ = max{b ∈ B}, bL is the edge-cut in GL defined up from

[S, Sc] and dvw is the traffic demand between nodes v and w. �

The original version of this lemma assumes that both bP and bL are bonds, however

along its proof only their edge-cut character is used, so we shall used the result as it
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is enunciated above, which has the advantage of providing a bound for bL despite of

its bond character. In order to find a lower bound for the cost of the optimal solution,

let P = {[S1, S
c
1], . . . , [Sk, S

c
k]} be a family of mutually disjoint edge-cuts, for instance, a

partition of EP in bonds. The ligthpaths have each of their edges in at most one element

of the partition, so

(2) ∀e ∈ GL |E(ρ(e))| ≥
∑
F∈P
|ρ(e) ∩ F |.

For each edge-cut F = [S, Sc] ∈ P let b̂F be the minimum integer value for |bL| that

verifies the inequality (1) of the previous Lemma, i.e., the minimum necessary number

of logical links that traverse some edge-cut, which is:

b̂F = b̂(S,Sc) = min

b ∈ Z :
∑

v∈S,w∈Sc

dvw ≤ bB̄
⌊
b(|bP | − 1)

|bP |

⌋ .

From the previous definition it is directly inferred that:

(3) b̂F =

 |bP |
|bP | − 1

 1

bB̄

∑
v∈S,w∈Sc

dvw


 .

As a limit case, we assume during these proofs the following hypothesis: there is only

one capacity bB̄ for dimensioning links.

Thus, whenever a feasible instance of frp-morndp is given, we find a lower bound

for the cost of any of its solutions (GL, ρ) as follows:

c(GL, ρ) =
∑
e∈EL

∑
f∈ρ(e)

c(bB̄)`(f) = c(bB̄)
∑
f∈EP

∑
e:f∈ρ(e)

`(f) ≥ c(bB̄)
∑
F∈P

∑
f∈F

∑
e:f∈ρ(e)

`(f) =

c(bB̄)
∑
F∈P

∑
f∈F

`(f)|{e ∈ EL : f ∈ ρ(e)}| ≥ c(bB̄)
∑
F∈P

∑
f∈F

min
f∈F

`(f)|{e ∈ EL : f ∈ ρ(e)}| =

c(bB̄)
∑
F∈P

(min
f∈F

`(f) ·
∑
f∈F
|{e ∈ EL : f ∈ ρ(e)}|) ≥ c(bB̄)

∑
F∈P

b̂F ·min
f∈F

`(f).

where the third inequality comes from the fact that b̂F corresponds to the minimum

number of elements within a edge-cut of a feasible construction.

Since this bound does not depend on the routing function ρ, it is also valid for the

optimal solution and we have the result:
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Theorem 1. The cost of an optimal solution to frp-morndp is at least

c(bB̄)
∑
F∈P

b̂F ·min
f∈F

`(f),

for every family P of mutually disjoint edge-cuts. �

Analogously, if P is a “double partition”, i.e., each edge belongs to exactly two sets

of P, then we have the following bound:

min c(GL, ρ) ≥ 1

2
c(bB̄)

∑
F∈P

b̂F ·min
f∈F

`(f), ∀P double partition.

In what follows we will extensively consider double partition in physical bonds of cardinal

2, with `(f) = 1 for all f , so we will have

(4) min c(GL, ρ) ≥ 1

2
c(bB̄)

∑
F∈P

b̂F , ∀P double partition: |F | = 2 ∀F ∈ P.

3.1. Double partition of the first kind. Consider the double partition generated by

each vertex against its complement, i.e. P = {[{v}, {v}c]}v∈V , then

b̂({v},{v}c) =

⌈
dGP

(v)

dGP
(v)− 1

⌈∑
w 6=v dv w

bB̄

⌉⌉
.

Replicating the parameters sets used in Figure 1, let B = {bB̄}, `(f) = c(bB̄) =

dv w = 1, for all f ∈ EP and v, w ∈ V , while GP = Cn. Thus dGP
(v) = 2 and

b̂({v},{v}c) = 2 d(n− 1)/bB̄e. Besides we can apply bound (4) to obtain

c(GL, ρ) ≥ 1

2

∑
v∈V

2

⌈
n− 1

bB̄

⌉
= n

⌈
n− 1

bB̄

⌉
.

Unfortunately, this bound is not very good. In particular, it is not good enough to prove

the optimality of the solutions shown in Figure 1, but we mention it here because it is

quite general since it can be applied to many families of instances.

3.2. Diameter Partition of Cn. To deal with the graphs in Figure 1, let us consider

the double-partition of the set of edges of Cn with bonds determined by a “half and a

half” partition. More precisely, consider the subsets of the form Hi = {i, (i + 1), (i +

2), . . . , (i + dn/2e)} -where the sums are taken in Zn-, and the partition P induced by
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them, i.e., P = {[Hi, H
c
i ]}

n−1
i=0 . Because of (3) it holds that:

b̂[Hi,Hc
i ] = 2

⌈
dn/2ebn/2c

bB̄

⌉
P is a double-partition, so because of (4) we obtain a lower bound Č(n, bB̄):

c(GL, ρ) ≥ Č(n, bB̄) = n

⌈
dn/2ebn/2c

bB̄

⌉
.

In Table 1, we show the values of Č and the cost of the graphs found in Figure 1 which

can be considered as upper bounds for the optimal cost. As we can see, there are only

three non coincidence. They are for (n, bB̄) = (4, 3), (5, 3), (7, 3).

Table 1. Upper bound found in [1] vs theoretical lower bounds

n\bB̄ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 [1] 10 4

Č 8 4
5 [1] 15 15 10 10 5

Č 15 10 10 10 5
6 [1] 18 18 12 12 12 12 6

Č 18 18 12 12 12 12 6
7 [1] 42 33 21 21 14 14 14 14 14 14 7

Č 42 28 21 21 14 14 14 14 14 14 7
8 [1] 48 32 32 – 24 16 16 16 16 16 16 16 16 8

Č 48 32 32 24 24 16 16 16 16 16 16 16 16 8

Complementarily, each matching closes the optimality of the corresponding solution

found in Figure 1.

Let us remark that the case n = 8, bB̄ = 6 was badly reported in [1]. Besides, there

were some cases (e.g. n = 7, bB̄ = 10) for which the computer aborted without the

certainty of having found an optimal solution, certainty that now, under the light of the

present work, we do have.

3.2.1. Remark. Another important remark is the following. For some values of bB̄ the

bound Č remains constant. For instance, for n = 5 with bB̄ = 3, 4, 5 or n = 6 with

bB̄ = 5, 6, 7, 8. Thus, whenever an optimal solution verifying the bound for one of these

bB̄’s is found, it will automatically turn out to be an optimal solution for greater bB̄’s

under the same Č. It is worth pointing out that solutions for small bB̄’s are sometimes

found much more quicker than those for greater capacities. For instance, the solution

for n = 7 and bB̄ = 6 was found by [1], in 2 minutes 20 seconds, while the solutions

for bB̄ = 7, 8, 9, 10, 11 were found in approximately 12, 43, 180, 5220 and 287 minutes

respectively.
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3.3. Case n = 4, bB̄ = 3. This was found in [1], however it is easy to check. Indeed,

since a network with cost 8 can only be attained by the shortest path routing, there is

only one fundamental possible solution (plus symmetric variants), and it is unfeasible.

Complementarily, the shortest alternative to route a lightpath which is not a shortest

path is two units longer.

3.4. Case n = 5, bB̄ = 3. Follows by applying bound (1) to a bond determined by one

vertex and its complement. Indeed, this gives us 4 ≤ 3bdGL
(v)/2c, thus dGL

(v) ≥ 4 and

the logical network must be complete.

3.5. Case n = 7, bB̄ = 3. We consider the bonds with two adjacent vertices, i.e. bi of

the form Fi = [{i, (i + 1)}, {i, (i + 1)}c], i = 0, . . . , 6, where the sums are taken in Z7.

In that case b̂Fi is 2d2 × 5/3e = 8. So at least 8 edges must traverse such bonds. We

are looking for constructions with the lowest lengths for their lightpaths. The minimum

possible distribution of lengths is of two lightpaths of length 1, four of length 2 and two

of length 3.

After adding up these costs for the seven bonds b0, . . . , b6, we are counting the costs

of lightpaths of length 1 twice, and four times those of lightpaths of length 2 and 3, thus,

the total length is at least

7×
(

2× 1

2
+

4× 2 + 2× 3

4

)
= 31.5,

Hence, 32 would be a lower bound for the cost. Such configuration is unfeasible as we

shall see immediately. First of all let us notice that it should consist of 7 lightpaths of

lengths 1 and 2, which would add up a partial cost of 21. The complementary portion of

the cost would be 11 = 32− 21, which is impossible to obtain with lightpaths of length

3. The next possible value is 33 and it is feasible indeed, because it matches the cost

found in Figure 1. Therefore, the optimality of that construction is proven.

Up to this point we formally proved that all those solutions numerically found with

CPLEX are actually optimal. These solutions are for n = 4, . . . , 8, with bB̄ ranging

within the theoretical boundaries found in [2] and [3].
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4. Optimal networks for greater n

In this section we present a family of logical networks that seems to be optimal for

many values of the parameters. We prove its optimality for some small values of n.

Besides, in some cases they do not match with the graphs found in [1], so they constitute

examples of the non unicity of the optimal solution.

4.1. Definition of the family Gn,b. We consider a family of logical networks Gn,b

defined as follows. First of all, we shall define an order relation between the edges of

Kn. Let us limit to consider V (Kn) = Zn, i.e., the integers modulo n represented by

0, 1, 2, . . . , n − 1. When an edge is of the form {i, i + j} and j ≤ n/2, we say that its

length is j. Given n ≥ 3 and k < n/2, let Sn,k denote the set of 2-regular connected

subgraphs of Kn with edges of length k. If n is even and k = n/2, then Sn,k are copies

of K2. For illustrative purposes, the following figure sketches the sets of edges S8,1, S8,2,

S8,3 and S8,4.

S8,1 0

1

2

3

4

5

6

7

S8,2 0

1

2

3

4

5

6

7

S8,3 0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

S8,4

The degenerated case of n even and k = n/2 is not of our interest, so, from now we

will suppose, k < n/2.

If gcd(n, k) = 1 then Sn,k consists of exactly one cycle of length n. However, when

gcd(n, k) > 1, Sn,k consists of exactly gcd(n, k) cycles of length cn,k = n/ gcd(n, k).

Indeed, (n/ gcd(n, k))k = n(gcd(n, k)/k) ≡ 0 mod n, so cn,k ≤ n/ gcd(n, k). Con-

versely, if cn,k is the length of the cycle, then cn,kk ≡ 0 mod n, i.e. n|cn,kk. Dividing

by gcd(n, k) we have n/ gcd(n, k) | cn,k(k/ gcd(n, k)). Thus n/ gcd(n, k) | cn,k, because

gcd(n/ gcd(n, k), k/ gcd(n, k)) = 1, thus n/ gcd(n, k) ≤ cn,k. In the example above,

gcd(8, 2) = 2 and we have 2 cycles of length 8/2 = 4.

Another way to see the length of the cycles in Sn,k is by observing that the vertices of

each cycle are the right (and left) cosets of the (cycle) subgroup 〈k〉 of Zn generated by k.
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I.e., 〈k〉 = {k, 2k, 3k, . . .} and the vertices of the cycles of Sn,k are {〈k〉, 1+〈k〉, 2+〈k〉, . . .}.

The order (i.e. length) of each cycle is cn,k = |〈k〉| = n/ gcd(n, k), since gcd(n, k) is the

smallest integer such that gcd(n, k)k ≡ 0 mod n.

Given any cycle C in Sn,k, let iC be the smallest index of those vertices in C. In the

previous example, S8,2 consists of two cycles C and C ′. For one of these cycles, e.g. C,

it holds that iC = 0, while iC′ = 1 for the other.

Thus, given any cycle C in Sn,k and any node x in C, there exists a unique hx ∈

{0, . . . , cn,k} such that x ≡ iC + hxk (mod n). For instance, in the unique cycle of S8,3,

iC = 0 and 1 ≡ 0 + 3 · 3 (mod 8), while 4 ≡ 0 + 4 · 3 (mod 8). Therefore h1 = 3 and

h4 = 4.

Now let us define a total order on E(Kn) in the following way:

• The edges of Sn,k always precede those of Sn,k+1.

• If C and C ′ are in Sn,k, then the edges of C precede those of C ′ iff iC < iC′ .

• Finally, when {x, x + k} and {x′, x′ + k} are part of the same cycle C ∈ Sn,k,

then {x, x+ k} precedes {x′, x′ + k} iff hx < hx′ .

For instance, if n = 8 we have

(0, 1) < (1, 1) < (2, 1) < (3, 1) < (4, 1) < (5, 1) < (6, 1) < (7, 1) <

(0, 2) < (2, 2) < (4, 2) < (6, 2) < (1, 2) < (3, 2) < (5, 2) < (7, 2) <

(0, 3) < (3, 3) < (6, 3) < (1, 3) < (4, 3) < (7, 3) < (2, 3) < (5, 3) <

(0, 4) < (4, 4) < (1, 4) < (5, 4) < (2, 4) < (6, 4) < (3, 4) < (7, 4).

Suppose we index the edges of Kn in such a way that e1 < e2 < · · · < em. consider

the sum sk of the length of the first k edges, i.e.,

sk = |e1|+ · · ·+ |ek|.

Then, let kb such that skb ≤ nb but s1+kb ≥ (n + 1)b. If skb = nb, then we de-

fine E(Gn,b) = {e1, e2, . . . , ekb}. If skb < nb we define E(Gn,b) = {e1, e2, . . . , ekb+1} \

{{0, skb+1 − b}}. We are giving some examples in Figure 2.
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b = 2 b = 3 b = 4 b = 5 b = 6

b = 2 b = 3 b = 4 b = 5 b = 6 b = 7

Figure 2. Gn,b for n = 8, 9.

n = 7 n = 8 n = 10 n = 25
bB̄ = 3 bB̄ = 4 bB̄ = 5 bB̄ = 6

(from [1]) (from [1]) G10,5 − {{1, 3}, 35}+ {12, 25} G25,26 − {13, 35}+ {11, 29}

Figure 3. Exotic graphs for n = 7, 8, 10, 25.

It can be verified that if we route each physical edge of Gn,b by the shortest path, then

for each edge e ∈ ECn, there are exactly b lightpaths that contain e, i.e. |{f ∈ EGn,b :

e ∈ ρ(f)}| = b.

4.2. Exotic graphs. The family Gn,b is optimal for many values of the parameters,

nevertheless, for some values it is not. In some of this cases we have found optimal

graphs which are quite close to one in Gn,b. We show these ad hoc graph in Figure 3.

We include those graph found in [1], for which the corresponding Gn,b is not optimal.

4.3. Optimality of Gn,b. Let us remark that for each n, the bound Č(n, bB̄) is attained

by exactly one Gn,b. In fact, it is easy to compute b given bB̄: b will be Č(n, bB̄)/n, i.e.

b(bB̄) =

⌈
dn/2ebn/2c

bB̄

⌉
.
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For instance, if bB̄ = dn/2ebn/2c, i.e., the maximum demand between two set of nodes,

then b = 1 and Gn,b is the cycle Cn. In the other extreme, if n is odd and bB̄ = 2, then

Gn,b is the complete graph Kn as predicted in [2].

Say this, the graphs Gn,b(bB̄) seems to be optimal for every n and bB̄ except for some

exceptional values of the parameters. For instance,

(n, bB̄) ∈ {(5, 3), (7, 3), (10, 5), (12, 3), (25, 6), (29, 2)}.

For this exceptions, the graphs described in previous subsection are optimal for

(n, bB̄) ∈ {(5, 3), (7, 3), (10, 5), (25, 6)}.

The first two were found in [1] while the last two are modifications of the corresponding

Gn,b graphs. On the other hand for (n, bB̄) ∈ {(12, 3), (29, 2)}, we have not found graphs

attained the bound Č, but the graphs G12,12 + 11 and G29,2 + 11 are feasible and have

cost Č + 1, i.e., one unit more than the lower bound. It is worth to say that we have a

proof, though not include in this work, that G12,12 is not optimal, but we still have not

the corresponding result for G25,26.

Interestedly, if n is even and bB̄ = 3, the feasible logical network introduced in [2] is

the complete graph Kn “without diameters”, i.e., K−n = Kn − {{i, i + l} : i ∈ Zn}, but

Gn,ddn/2ebn/2ce/3 is that graph only for n ≤ 8. Curiously, the graphs treated in [1] were

for n ≤ 8, so the authors and their advisors never noticed that difference. This induced

them to think that the graphs K−n were optimal. This claim is not true, since Gn,b(3)

are optimal at least for n = 10, 14, 16, 18, 20, 22, 24, 26, 28, 30.

4.4. Feasibility analysis. We have check the feasibility of the solution by hand for

n = 5, . . . , 10. Let us remarks, that this verification is facilitated by the symmetry of

the graphs, which implies that at most five edge faults need to be verified, and in many

cases only one edge fault. Besides, although the problem of feasibility is NP-complete, we

applies a polynomial heuristic algorithm which seems to works quite well. The algorithm

is as follows. For each fault edge, e.g., {1, 2}, we try to find i paths from vertex n− i to

vertices n− i+ 1, n− i+ 2, . . . , n. The algorithm solves a max flow problem using Ford-

Fulkerson from n−i to an auxiliary vertex v∗ adjacent from n−i+1, n−i+2, . . . , n. We

assign capacity bB̄ to each edge of the graph, and capacity 1 to the new edges incidence
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to v∗. In practice we have used two different algorithm. The first one is the described

previously, the second one tries to find a shortest path from vertex n − i to vertices

n− i+ 1, n− i+ 2, . . . , n “forward”, i.e., without passing through vertices smaller than

n − i. If that is not possible, then tries to find a shortest path using all vertices. Both

algorithm works well for the majority of the cases, but the first does not work very well

for large values of bB̄, while the second one does not work very well for small ones, so

they are quite complementary. Nevertheless, it seems possible to add the characteristics

of the second algorithm to the first one in order to have only one, but we haven’t time

to do it. It is worth to say that what we verify by hand was something similar to the

second algorithm. Besides, the actual technology applied by real-word networks, use

shortest path algorithms, so, the second algorithm seems to be more realistic. However,

we have try the shortest path algorithm alone, but it doesn’t work very well.

Table 2. Parameter for new optimal solutions for FRS-MORDP found
in this work, and the missing ones

n 9 10 11 12 13 14 15 16 17 18 19
bB̄ 2–20 3–25 2–30 4–36 2–42 3–49 2–56 3–64 2–72 3–81 2–90

% of bB̄ 100% 100% 100% 97% 100% 100% 100% 100% 100% 100% 100%
n 20 21 22 23 24 25 26 27 28 29 30
bB̄ 3–100 2–110 3–121 2–132 3–144 2–156 3–169 2–182 3–196 2–104,106–210 3–225

% of bB̄’s 100% 100% 100% 100% 100% 100% 100% 100% 100% 99.52% 100%

In Table 2, we present the values of the parameters for which we have found new

optimal networks. For each n we give the maximum capacities for which an optimal

solution was found. We compute the percent of the possible values of the maximum

capacities. The reader can observe that for only two cases, n = 12, bB̄ = 3 and n =

29, bB̄ = 105, we have not found an optimum.

5. Counterexamples to Lemma 1’s sufficiency

In [3], a counterexample for the sufficiency of Lemma 1’s (considering bonds instead of

edge-cuts) is given in an network with non full demands. During the thesis defense, it was

mention that in practice the condition seems to be sufficient because no counterexample

was found. In particular, for those feasible solutions found in [1]. Now we will describe

a non feasible networks verifying inequality (1).
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(a) (b)

Figure 4.

The counter example is for n = 8 and bB̄ = 4. Let us consider as logical network the

graph G = Cayley(Z8, {±1,±3}), i.e. V (G) = Z8 and E(G) = {{i, i ± j} : i ∈ Zn, j ∈

{1, 3}}. It is shown in Figure 4 (a). We route the ligthpaths through the shortest path.

There are four kind of bonds, those leaving 1, 2 3 or 4 vertices in one side and 7,6,5 and

4 in the other side respectively. Their corresponding demands are 1× 7 = 7, 2× 6 = 12,

3 × 5 = 15 and 4 × 4 = 16 which is the maximum. The size of the physical bonds is

always 2, and the cardinal of bL are, respectively, 4, 6, 8, 8, thus, the inequality is verified,

since 7 ≤ 4×b4/2c = 8, 12 ≤ 4×b6/2c = 12, 15 ≤ 4×b8/2c = 16, 16 ≤ 4×b8/2c = 16.

Now, let us prove that the solution is not feasible. Indeed, consider a physical link

fault. It will leave the logical network as in Figure 4 (b). Let us prove that it is not

possible to route the traffic in that case. First we prove that we need to route the traffic

through the smallest paths. Indeed, the sum of the distance between pair of vertices is

(1 + 2 + 1 + 2 + 3 + 2 + 3) + (1 + 2 + 1 + 2 + 3 + 2) + (1 + 2 + 1 + 2 + 3) + (1 + 2 + 1 +

2) + (1 + 2 + 1) + (1 + 2) + 1 = 48, but we have 12 edges, thus, the capacity should be

saturated in each edge when routing the demands. Finally, let v one of the vertices with

degree two. It will use its incident edges 7 times, 4 one and 3 the other. This leaves 1

free capacity, which will not be used by any other vertex demand.

It is worth to say that there are many other examples. For instance, the graph

(Z8, {{i, i ± j} : i ∈ Z8, j ∈ {2, 3}}) is easy to verify it is a counter example. Other

possible counterexamples are those Gn,b corresponding to exceptional graph described

in subsection 4.2, however we have not proved yet.
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Facultad Politécnica, Universidad Nacional de Asunción, Paraguay.



FULL DEMANDS OPTIMAL FRP-MORNDP SOLUTIONS OVER A CYCLE. 16

References

[1] Almenar M., R. Antivero and G. Yordi . “Dimensionamiento y Planificación de una Red de Datos

IP/MPLS sobre una Red de Transporte de Fibra Óptica”. Proyecto de Grado en Ingenieŕıa en
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