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Abstract

Michael Handel proved in [7] the existence of a fixed point for an
orientation preserving homeomorphism of the open unit disk that can be
extended to the closed disk, provided that it has points whose orbits form
an oriented cycle of links at infinity. More recently, the author generalized
Handel’s theorem to a wider class of cycles of links [13]. In this paper we
complete this topic describing exactly which are all the cycles of links
forcing the existence of a fixed point.

1 Introduction

Handel’s fixed point theorem [7] has been of great importance for the study of
surface homeomorphisms. It guarantees the existence of a fixed point for an
orientation preserving homeomorphism f of the unit disk D = {z € C: |z| < 1}
provided that it can be extended to the boundary S' = {z € C : |2| = 1} and
that it has points whose orbits form an oriented cycle of links at infinity. More
precisely, there exist n points z; € D such that

lim fk(zi):aiESl, lim fk(zi):wiESl,
k——o0 k— o0
i=1,...,n, where the 2n points {a;}, {w;} are different points in S and satisfy
the following order property:

(*) @41 is the only one among these points that lies in the open interval in
the oriented circle St from w;_1 to w; .

(Although this is not Handel’s original statement, it is an equivalent one as
already pointed out in [9]).

Le Calvez gave an alternative proof of this theorem [9], relying only in
Brouwer theory and plane topology, which allowed him to obtain a sharper
result. Namely, he weakened the extension hypothesis by demanding the home-
omorphism to be extended just to DU (Ujez/nz{ i, w;i}) and he strengthed the
conclusion by proving the existence of a simple closed curve of index 1.

The author generalized both Handel’s and Le Calvez’s results as follows [13].
Let P C D be a compact convex n-gon. Let {v; : i € Z/nZ} be its set of vertices
and for each i € Z/nZ, let e; be the edge joining v; and v;4+1. We suppose that
each e; is endowed with an orientation, so that we can tell whether P is to the
right or to the left of e; . We say that the orientations of e; and e; coincide if
P is to the right (or to the left) of both e; and e;, i,j € Z/nZ.

We define the index of P by



i(P):lf% > 6

1E€EZ/NZ

where §; = 0 if the orientations of e;_; and e; coincide, and d; = 1 otherwise.
We will note «; and w; the first, and respectively the last, point where the
straight line A; containing e, and inheriting its orientation intersects 0D.

(a) Handel’s index 1 polygon (b) Index -1 polygon

(¢) wi = ajpa Vi

Figure 1: The hypothesis of Theorem 1.1.

We say that a homeomorphism f : D — D realizes P if there exists a family
(2i)iez/nz of points in D such that for all i € Z/n’Z,

. ki, _ . : k(N — .
kEIEloof (Zz) Qs kgl}rloof (Zz) Wi.

Theorem 1.1. [13] Let f : D — D be an orientation preserving homeo-
morphism which realizes a compact convex polygon P C I where the points
i, wi,i € Z/nZ are all different. Suppose that f can be extended to a homeo-
morphism of DU (Ujez/nz{, wi}).

If i(P) # 0, then f has a fized point. Furthermore, if i(P) = 1, then there exists
a simple closed curve C' C D of index 1.

The two polygons appearing in Figure 1 (a) and (b) satisfy the hypothesis
of this theorem. However, the polygon illustrated in (c) does not, as there are
coincidences among the points {«;}, {w;}, i € Z/nZ.



The purpose of this paper is to complete this topic: we assume that there
exists a family (2;)icz/nz of points in D and two families (i )icz/nz, (Wi)icz/nz
of points in S! such that for all i € Z/nZ,

lim f5(z) = a;, lim f*(z) = w;,
k—+oo

k——o0

that the homeomorphism f extends to a homeomorphism of DU(U;cz/nz{:, wi}), and
describe exactly which combinatorics of the points a;,w;, i € Z/nZ force the ex-
istence of a fixed point.

A cycle of links of order n > 3 is a family of pairs of points on the circle S,
L= ((avi,wi))iez/nz
such that for all i € Z/nZ:
1. a; # w,
2. a;11 and w41 belong to different connected components of S\ {a;, w;}.
If £ is a cycle of links, we define the set
0= {oj,w; i € Z/nZ} C St

of points in the circle which belong to a pair in the cycle.

If a,b € £, we note a — b if b follows a in the natural (positive) cyclic order
on S', and ¢ — b if either ¢ = b or a — b.
We say that a cycle of links £ is elliptic if for all i € Z/nZ:

wi—1 —> Qi1 — Wj.

We say it is hyperbolic if n = 2k, k > 2 and for all i € Z/nZ, i =0 mod 2:

O — O — Wit1 — Wy — Q19



a1 o wo = Q2 Qg
wo
w2
w1
(65) (651 w3
(a) An elliptic cycle of links of or- (b) A hyperbolic cycle of links of order
der 3 4

We say that L is non-degenerate if:
(ai,wi) eL = (wi,ai) ¢ L.

Of course, we say it is degenerate, if this condition is not satisfied. An example
is illustrated in Figure 2.

wo = Q9 Qp = W2

W1 = Q3

Figure 2: A degenerate cycle of links

We say that a homeomorphism f : D — D realizes L if there exists a family
(2i)icz/nz of points in D such that for all i € Z/nZ,

li ERE T F(2i) = ws.
Jm f(zi) = ai, lm () = w

The following result is the main theorem of this article.

Theorem 1.2. Suppose that f : D — D is an orientation preserving homeomor-
phism which realizes a cycle of links L and can be extended to a homeomorphism
of DU.
If L is either elliptic or hyperbolic, then f has a fized point. Furthermore, if L
is non-degenerate and elliptic, then there exists a simple closed curve C' C D of
index 1 .



Remarks

The elliptic non-degenerate case contains Le Calvez’s improvement
of Handel’s theorem.

Indeed, if the points in ¢ are all different, £ is non-degenerate. As the example
in Figure 1 (¢) shows, our theorem is more general even in this case.

The theorem contains the author’s result on non-zero index polygons.
Indeed, in [13] it is shown that if f realizes a non-zero index polygon where the
points a;,w;,i € Z/n7Z are all different, then f realizes an elliptic or hyperbolic
cycle of links. Again, as coincidences in ¢ are allowed, our theorem is more
general even in this case.

The extension hypothesis is needed.

Indeed, if f : D — D is fixed-point free, one can easily construct a homeomor-
phism A : D — D such that hRTh~! realizes any prescribed cycle of links.

Non-degeneracy is needed for obtaining the index result.

Let f; be the time-one map of the flow whose orbits are drawn in the figure
below.

a1 — W3

Qg = Wo g = W2

Q3 = W1

As we will explain below, one can perturb f; in a homeomorphism f such
that:

e Fix(f) = Fix(f1) = {z},
e f = f1 in a neighbourhood of z,
o f realizes £ = ((vi,wi))iez/az-

We say that the set X is free if f(X)NX = 0.
One can find (by means of a transverse foliation, for example), free and
pairwise disjoint simple paths §; and ~;, i € Z/47 such that :



. . ’ . p— . ’
e (3; joins z; and z;, where limy_, o f; k(zz) = a; and limy_ o0 fF(2;) = v,
where i* =i + 1 for even values of 4, and i* = ¢ — 1 for odd values of 1,

e ; joins fli(z;-) and z;-/, where p; > 0 and lim_, o ff(z;/) = wj,
e v; and §; are disjoint from the fi- orbits of every z;, z;/, z;/ with ¢ # j.

By thickening the paths {8;} and {~;}, one can find free, pairwise dijsoint
open disks {D;} and {D;'} such that the disks D; and D; are disjoint from the
fi-orbits of the points z;, z;», and z;/, for i # j.

We construct a homeomorphism A : D — D such that:

o h=1d outside Ujez/47.D; U D;,
o h(z) = z;-,

o W(f1(z) =2

So, if we define f = h o f1, we obtain
lim f7%(z) = i, lim f*(z) = w,
k—o00 k—o00
for all i € Z/4Z. Clearly we can make this construction in such a way that

f = f1 in a neighbourhood of . Moreover, as the disks {D;} and {D; } are
free,

Fix(f) = Fix(f1) = {«}.
So, f realizes the elliptic cycle £, but there is no simple closed curve of index

No negative-index fixed point is guaranteed by hyperbolicity.

Qas

w2

&)

w3

One could think that when £ is hyperbolic, a negative-index fixed point
should be obtained. For example, this would be the case if one had an oriented

foliation F in D\ Fix(f) whose leaves are Brouwer lines for f and simple paths
Vi, i € Z/nZ joining «; and w; such that:

e cach ~; is positively transverse to F,



e the paths {~;} bound a compact disc in D.

(See the figure above.) Indeed, in this case, the Poincaré-Hopf formula would
give a singularity z of the foliation for which i(F,x) < 0. So, z € Fix(f) and
by a result of Le Calvez ([10]) one has i(f,x) = i(F,z) < 0.

However, this is not the case, as the following example shows. Let f; be the
time-one map of the flow whose orbits are drawn in the figure below.

w1 a3
wo

— e
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In the same fashion we did in our preceding example, one can perturb f; in
a homeomorphism f such that:

e Fix(f) = Fix(f1) = {z},
e f = f1 in a neighbourhood of z,
o f realizes £ = ((vi,wi))iez/az-

So, f realizes the hyperbolic cycle £, but there is no fixed point of negative
index.

It turns out that these results completely describe the combinatorics giving
rise to fixed points:

Lemma 1.3. Given a family ((oi,w:))iez/mz of pairs of points in S, then one
of the following is true:

1. there exists a subfamily of ((cvi,w;))icz/nz forming an elliptic or hyperbolic
cycle of links,

2. the straight oriented lines from «; to w; bound a non-zero index polygon

PcD,

3. there exists a fived-point free orientation preserving homeomorphism f :
D — D, and a family of points (zi)icz/nz i D such that for all i € Z/nZ,

li M(zi) = oy, i F(2i) = wi.
Jm () = aiy lim fH(z) = w



The structure of this article is the following. In Section 2 we introduce the
tools to be used (brick decompositions, Brouwer theory, Repeller/Attractor con-
figurations [13]) and we sum up the results from [9] and [13] that will be used
in the proofs. In Section we state two lemmas that are the key for the contra-
diction argument in the proof of Theorem 1.2, which is contained in Section 4.
The last Section (5) is devoted to the proof of Lemma 1.3, which shows that
out results are maximal.

2 Preliminaries

2.1 Brick decompositions

A brick decomposition D of an orientable surface M is a 1- dimensional singular
submanifold ¥(D) (the skeleton of the decomposition), with the property that
the set of singularities V' is discrete and such that every o € V has a neigh-
borhood U for which U N (X(D)\V) has exactly three connected components.
We have illustrated two brick decompositions in Figure 4. The bricks are the
closure of the connected components of M\X(D) and the edges are the closure
of the connected components of £(D)\V. We will write E for the set of edges,
B for the set of bricks and finally D = (V, E, B) for a brick decomposition.

+ /

(a) M = R? (b) M = R2\{0}

Figure 3: Brick decompositions

Let D = (V, E, B) be a brick decomposition of M. We say that X C B
is connected if given two bricks b, b’ € X, there exists a sequence (b;)o<i<n,
where by = b, b, = b’ and such that b; and b;11 have non empty intersection,
1 € {0,...,n —1}. Whenever two bricks b and b’ have no empty intersection,
we say that they are adjacent. Moreover, we say that a brick b is adjacent to a
subset X C B if b ¢ X, but b is adjacent to one of the bricks in X. We say that
X C B is adjacent to X’ C B if X and X’ have no common bricks but there
exists b € X and ' € X’ which are adjacent.

From now on we will identify a subset X of B with the closed subset of M
formed by the union of the bricks in X. By making so, there may be ambigui-
ties (for instance, two adjacent subsets of B have empty intersection in B and
nonempty intersection in M), but we will point it out when this happens. We
remark that 0X is a one-dimensional topological manifold and that the con-
nectedness of X C B is equivalent to the connectedness of X C M and to the
connectedness of Int(X) C M as well. We say that the decomposition D’ is a
subdecomposition of D if ¥(D’) C 3(D).



If f: M — M is a homeomorphism, we define the application ¢ : P(B) —
P(B) as follows:

o(X)={be B: f(X)Nb+0)}.

We remark that ¢(X) is connected whenever X is.
We define analogously an application ¢_ : P(B) — P(B):

o (X)={beB: f~HX)Nb#0}.

p({b})

—

S

We define the future [b]> and the past [b]< of a brick b as follows:

B> = J @ ({0}, bl = | ¢ ({o}).

k>0 k>0

We also define the strict future [b]s and the strict past [b]< of a brick b :

Bl = J " (1)), < = |t ({6})-

k>0 k>0

We say that a set X C B is an attractor if it verifies ¢(X) C X; this is
equivalent in M to the inclusion f(X) C Int(X). A repeller is any set which
verifies ¢_(X) C X. In this way, the future of any brick is an attractor, and
the past of any brick is a repeller. We observe that X C B is a repeller if and
only if B\ X is an attractor.

Remark 2.1. The following properties can be deduced from the fact that X C
B is an attractor if and only if f(X) C Int(X):

1. If X C B is an attractor and b € X, then [b]> C X ; if X C B is a repeller
and b € X, then [b]< C X,

2. if X C B is an attractor and b ¢ X, then b<NX =0 ;if X C Bisa
repeller and b ¢ X, then [b]> N X =0,

3. if b € B is adjacent to the attractor X C B, then [b]= N X # 0; if b € B
is adjacent to the repeller X C B, then [b]o N X # (;

4. two attractors are disjoint as subsets of B if and only if they are disjoint
as subsets of M; in other words, two disjoint (in B) attractors cannot be
adjacent; respectively two disjoint (in B) repellers cannot be adjacent;



The following conditions are equivalent:
be [b]>a [b]> = [b]Za be [b]<a [b]< = [b]g, [b]< n [b]Z 7é @a [b]ﬁ n [b]> 7é (Z)

The existence of a brick b € B for which any of these conditions is satisfied
is equivalent to the existence of a closed chain of bricks , i.e a family (b;)icz/rz
of bricks such that for all i € Z/rZ, Ug>1f¥(b;) N b1 # 0.

In general, a chain for f € Homeo(M) is a family (X;)o<i<, of subsets of M
such that for all 0 <i<r—1, Ukzlfk(Xi) N X1 # 0. We say that the chain
is closed if X, = Xj.

We say that a subset X C M is free if f(X)N X = 0.

We say that a brick decomposition D = (V, E, B) is free if every b € B is a
free subset of M. If f is fixed point free it is always possible, taking sufficiently
small bricks, to construct a free brick decomposition.

We recall the definition of mazimal free decomposition, which was introduced
by Sauzet in his doctoral thesis [12]. Let f be a fixed point free homeomorphism
of a surface M. We say that D is a maximal free decomposition if D is free and
any strict subdecomposition is no longer free. Applying Zorn’s lemma, it is
always possible to construct a maximal free subdecomposition of a given brick
decomposition D.

2.2 Brouwer Theory background.

We say that T : [0, 1] %_ﬁ is an arc, if it is continuous and injective. We say
that an arc I joins z € D to y € D, if I'(0) = 2 and I'(1) = y. We say that an
arc [ joins X CDtoY CD,if ' joinsze X toyeY.

Fix f € Homeo™ (D). An arcy joining z ¢ Fix(f) to f(z) such that f(y)ny =
{z, f(2)} if f2(z) = z and f(y) N~y = {f(2)} otherwise, is called a translation

arc.

Proposition 2.2. (Brouwer’s translation lemma [1], [2], [4] or [6]) If
any of the two following hypothesis is satisfyed, then there exists a simple closed
curve of index 1:

1. there exists a translation arc vy joining z € Fix(f?)\ Fix(f) to f(z);

2. there exists a translation arc vy joining z ¢ Fix(f?) to f(z) and an integer

k> 2 such that f*(y) N~y # 0.

If 2 ¢ Fix(f), there exists a translation arc containing z; this is easy to prove
once one has that the connected components of the complementary of Fix(f)
are invariant. For a proof of this last fact, see [3] for a general proof in any
dimension, or [8] for an easy proof in dimension 2.

We deduce:

Corollary 2.3. If Per(f)\ Fix(f) # 0, then there exists a simple closed curve
of index 1.

Proposition 2.4. (Franks’ lemma [5]) If there exists a closed chain of free,
open and pairwise disjoint disks for f, then there exists a simple closed curve of
index 1.

10



Following Le Calvez [9], we will say that f is recurrent if there exists a closed
chain of free, open and pairwise disjoint disks for f.

The following proposition is a refinement of Franks’ lemma due to Guillou
and Le Roux (see [11], page 39).

Proposition 2.5. Suppose there exists a closed chain (X;);cz/rz for [ of free
subsets whose interiors are pairwise disjoint and which verify the following prop-
erty: given any two points z,z" € X; there exists an arc vy joining z and z' such
that Y\{z, 2’} C Int(X;). Then, f is recurrent.

We deduce:

Proposition 2.6. Let D = (V, E, B) be a free brick decomposition of D\ Fix(f).
If there exists b € B such that b € [b]s, then [ is recurrent.

2.3 Little bricks at infinity.

Fix f € Homeo™ (D), different from the identity map and non-recurrent. We
will make use of the following two propositions from [9] (both of them depend
on the non-recurrent character of f). The first one (Proposition 2.2 in [9]) is a
refinement of a result already appearing in [12]; the second one is Proposition
3.1 in [9).

Proposition 2.7 ([12],[9]). Let D = (V, E, B) be a free mazimal brick decom-
position of D\ Fix(f). Then, the sets [b]>, [b]>, [bl< and [b]< are connected. In
particular every connected component of an attractor is an attractor, and every
connected component of a repeller is a repeller.

Proposition 2.8. [9] If f satisfies the hypothesis of Theorem 1.2, then for all
i € Z/nZ we can find a sequence of arcs (Y¥)kez such that:

o cach vF is a translation arc from f¥(z;) to fE¥1(z),

o fOF)NAf =0 i K <k,

e the sequence (YF)r<o converges to {a;} in the Hausdorff topology,
e the sequence (YF)i>0 converges to {w;} in the Hausdorff topology.

This result is a consequence of Brouwer’s translation lemma and the hy-
pothesis on the orbits of the points (z;)icz/nz. In particular, the extension
hypothesis of Theorem 1.2 is used. It allows us to construct a particular brick
decomposition suitable for our purposes:

Lemma 2.9. For every i € Z/nZ, take U, a neighbourhood of o; in D and U;r
a neighbourhood of w; in D such that U n U;r = (). There exists two families
(b;l)iez/,lzm and (bgl)iez/nzylg,l of closed disks in' D, and a family of integers
(ls)iez/nz such that:

1. each b} is free and contained in U (1< —1) or in U (1>1),

2. Tnt(b)) NInt (D) =0, if L £ 1,

11



3. for every k > 1 the sets (bl)1<i<x and (b)) _r<i<—1 are connected,
4. for alli € Z/nZ, 0 Uiez 0y bl is a one dimensional submanifold,

5. if x € D, then x belongs to at most two different disks in the family
(V1) iezvjoy, @ € Z/n,

6. for all i € Z/nZ flitl(z) € Int(b)TY) for all 1 > 0, and f~l Y (z) €
Int(b;"""1) for all 1 >0,

7. fR(z) € bl if and only if j=1i and k=1; +1 — 1,

8. the sequence (b);>1 converges to {w;} in the Hausdorff topology and the
sequence (b1);<_1 converges to {c;} in the Hausdorff topology.

The idea is to construct trees T, C U, TZ-Jr C U;r, i € Z/nZ by deleting the
loops of the curves [[,~ ;¥ N U and [[, ., vF N U;" respectively, and then
thickening these trees to obtain the families (b}');ez/nz,>1 and (b});ez/nz,1<—1-
We refer the reader to [13] for a proof in english but we remark that these results

are contained in [9]. We have illustrated these families in Figure 4.

Figure 4: The families b/

Remark 2.10. The fact that the sequence (b/!);>1 converges in the Hausdorff
topology to w;, implies that we can find an arc I'} : [0, 1] — Int(U;>ob!)) U {w;}
such that T/ (1) = w;, i € Z/nZ. Similarly, we can find an arc T'; : [0,1] —
Int(U>ob; ") U {a;} such that T; (1) = oy, i € Z/nZ.

2.4 Repeller/ Attractor configurations

2.4.1 Cyclic order at infinity.

Let (ai)icz/nz be a family of non-empty, pairwise disjoint, closed, connected
subsets of I, such that @; NOD # () and U = D\(U;ez/nza:) is a connected open
set. As U is connected, and its complementary set in C

{Z eC: |Z| > 1} U Uiez/nzai

12



is connected, U is simply connected.

With these hypotheses, there is a natural cyclic order on the sets {a;}.
Indeed, U is conformally isomorphic to the unit disc via the Riemann map
@ : U — D, and one can consider the Carathéodory’s extension of ¢,

@:U%ﬁ,

which is a homeomorphism between the prime ends completion U of U and the
closed unit disk . The set J; of prime ends whose impression is contained in

a; is open and connected. It follows that the images J; = gb(ji) are pairwise
disjoint open intervals in S!, and are therefore cyclically ordered following the

positive orientation in the circle.

2.4.2 Repeller/Attractor configurations.

We recall de definition of Repeller/Attractor configuration that was introduced
in [13].

We fix f € Homeo™ (D) together with a free maximal decomposition in bricks
D= (V,E, B) of D\ Fix(f) .

Let (Ri)icz/nz and (A;)iez/mz be two families of connected, pairwise disjoint
subsets of B such that :

1. For all i € Z/nZ:

(a) R; is a repeller and A; is an attractor;
(b) there exists non-empty, closed, connected subsets of D, r; C Int(R;),
a; C Int(A;) such that 77 N 0D # () and a; NOD #

2. D\(Ujez/nz(ai Ur;)) is a connected open set.

We say that the pair ((R;)iez/nz, (Ai)icz/nz) is a Repeller/Attractor config-
uration of order n .
We will note
&= {RiaAi NS Z/?’LZ}

Property 2 in the previous definition allows us to give a cyclic order to the
sets 14, 44,1 € Z/nZ (see the beginning of this section).

We say that a Repeller/Attractor configuration of order n > 3 is an elliptic
configuration if :

1. the cyclic order of the sets r;,a;, ¢ € Z/nZ, satisfies the elliptic order
property:

apg — Ty —Qay — ... =+ Q; 7> Tiy2 —> Qjy1 —7 ... —> Ap_1 — T'1 — Ap-

2. for all i € Z/nZ there exists a brick b; € R; such that [b;]> N A; # 0;

We say that a Repeller/Attractor configuration is a hyperbolic configuration
if:

13



1. the cyclic order of the sets r;,a;, i € Z/nZ, satisfies the hyperbolic order
property:

rTo—ayg —T1—> Q1 —> ... =T > A = Tir1 7 QGirl —7 ... 7 Tp—1 —7 AQp—1 — T0-

2. for all i € Z/nZ there exists two bricks bi, b~ € R; such that [bi]s N A; #

1) 7

0, and [b;" '] N Ay # 0;

>

<]

(a) An elliptic configuration (b) A hyperbolic configuration

We will make use of the following results from [13]:

Proposition 2.11. [13] If there exists an elliptic configuration of order n > 3,
then f is recurrent.

Proposition 2.12. [13] If there exists a hyperbolic configuration of order n > 2,
then Fix(f) # 0.

3 Two technical lemmas.

In this section we give applications of Propositions 2.11 and 2.12 respectively,
that will be used in the proof of Theorem 1.2.

We fix f € Homeo™ (D) together with a free maximal decomposition in bricks
D = (V,E, B) of D\ Fix(f), and we are suppose that f is non-recurrent.

Let a;, i € Z/n7Z, be non-empty, pairwise disjoint, closed, connected subsets
of D, such that @; N OD # 0, for all i € Z/nZ, and U = D\ (U;ez/nzai) is a
connected open set. We consider the Riemann map ¢ : U — D, and the open
intervals on the circle J;, i € Z/nZ defined in 3.1. We recall that the interval J;
correspond to the prime ends in U whose impression is contained in a;.

Let (I;);ez/mz be the connected components of Sl\(Uiez/ani). So, each I;
is a closed interval, that may be reduced to a point.

Remark 3.1. One can cyclically order the sets (a;)icz/nz, (7j)icz/mz, Where
(75)iez/mz is any family of closed, connected and pairwise disjoint subsets of U
satisfying:

1. 5 NOU #0, j € Z/mZ,

2. for all j € Z/mZ, there exists i; € Z/nZ such that ¢(r;) N S* C I,

14



3. the correspondence j — 7; is injective.
Lemma 3.2. We suppose that:
1. the cyclic order of the sets a;, i € Z/n7Z, is the following:

apg —ay — ... = Q; —> Ajy1 —> ... —> Gp—1 — AQ-

2. for all i € Z/nZ there exists by € B, such that a; C [b]]>,

3. there exists three bricks (b )sez/3z such that

(a) for all s € Z/3Z and for all i € Z/nZ, one has by C [bf]< (and so
[bs_]< - U);

(b) [bs)< NOU # 0 for all s € Z/3Z,
(c) for all s € Z)37Z there exists is € Z/nZ such that p([bs|<)NST C I,

Then, the correspondence s — is s not injective.

Figure 5: Lemma 3.2

Proof. We will prove that if the correspondence s — i5 is injective, we can
construct an elliptic configuration of order 3. As we are assuming f is not
recurrent, this is not possible by Proposition 2.11.

We begin by proving that [b;]< N [b]< # 0 implies is = 4,. Indeed, if
[b7]< N [b]< # 0, then [b7]< U [by]< is a connected set and ¢([bs < U [by ] <)
intersects both I;, and I;, . If is # i,, then there exists jo, j1 € Z/nZ such that
any arc joining J;, and Jj, separates I;, from I;, in D . Our hypothesis 3.(a)
allows us to take a crosscut v from a;, to aj, such that yNU C [b;]>. So,

¢(yNU) is an arc joining J;, and Jj,, and

p(ynU) (bl U b 1<) # 0.

This gives us
(bTl< U by l<) N bS] # 0,
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and as we are supposing that f is not recurrent,
by 1< N[bs]> # 0.
So,
[b5]< € b ]<
which implies
p(bs]<)n St C L, N1,

a contradiction.

So, if the correspondence s — i is injective, the sets [b; ]« are pairwise
disjoint, and one can cyclically order the n+3 sets a;, [b |<, i € Z/nZ, s € Z./37
(see Remark 3.1). We may suppose without loss of generality that

[by]< = [br]< = b3 ]< = [bg ] <

For all s € Z/37Z, we can take js € Z/3Z such that

[bol< = aj, — [by ]< = ajo — [by]< = aj, — [bo] <

(see Figure 9).
For all s € Z/3Z, we define:

R, = b )<, Ao =[] )5

Js

We want to show that

((Rs)sezy3z): (As)sezy3z)s

is an elliptic configuration. It is enough to show that the sets As, Ry, s € Z/3Z,
are pairwise disjoint, because of the cyclic order of these sets , and our hypothesis
3.(a). We already know that the sets R, s € Z/3Z, are pairwise disjoint. As we
are supposing that f is not recurrent, and b;rs € [by]> for every pair of indices
s,s" in Z/37Z (3.(a)), we know that

b,

s N lby)< =0

for all s,s" in Z/37Z. So, the sets {A;}, are disjoint from the sets {Rs}, and we
just have to show that the sets {A;} are pairwise disjoint to finish the proof of
the lemma.

Because of the symmetry of the problem it is enough to show that

AgNA =0.

If this is not so,
AgU Ay = [bF]s U )]s

would be a connected set containing both a;, and a;,, and the cyclic order would
imply that
([b;;]> U [b;rl]>) n [b;ro]< # 0,

by our hypothesis 3.(a). As we are supposing that f is not recurrent, we have

[b;rl]> n [b;f,]< # 0.

16



But this implies that [bjl]> is a connected set containing both a;, and aj,. Once
again our hypothesis 3.(a) and the cyclic order gives us

11> N b} 1< # 0,

and we are done.

O

For our next lemma, we keep the assumption on the cyclic order of the sets
a;,i € Z/n:

apy —ay — ... = Q; —> Qi1 —7 ... — Ap_1 — AQ-

We define I;, as to be the connected component of S\ Ujez/nz Jj that follows
Ji—1 in the natural cyclic order on S*, so that we have:

Ji,1 — Iz — Ji;
for all i € Z/nZ.
Lemma 3.3. If for all i € Z/nZ:

1. there exists b € B, such that a; C [b]>,

2. there exists b; € B such that b; C [b)]<, j € {i — 1,i},

3. [b]]< CU, and [b; ]« NOU # 0,
4 p(b7l<)nS* C I,

then Fix(f) # 0.

Qg

[b; } < a4

Figure 6: Lemma 3.3 with n =6
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Proof. By Proposition 2.12 it is enough to show that we can construct a hyper-
bolic configuration.

We begin by proving that the sets {[b; ]« }, are pairwise disjoint. Otherwise,
there exists i # 7, such that

[b; 1< N [b; 1< # 0.

Then, [b; ]< U [b;]< is a connected set and ¢([b; |< U [b; ]<) intersects both I;
and I;. The cyclic order implies that any arc joining J;—1 and J; separates I;
from I;, i # j.

Our hypothesis 2. allows us to take a crosscut v from a;—; to a; such that

YNU C [b;]>.
So, p(yNU) is an arc joining J;—; and J;, and

e(yNU)Ne([b;y ]« Ub;]<) # 0.

This gives us
(b ]< U by 1<) N b7 ]> #0,

and as we are supposing that f is not recurrent,
b7 1< N b7 ]> #0.

So, [b; ]< C [b; ]<, which implies

p(b7lc)nSt c Linlj,

a contradiction.
So, we can cyclically order the 2n sets a;, [b; |<, i € Z/nZ (see Remark 3.1).
Moreover, for all i € Z/nZ,

A;—1 — [bz_]< — Q;.

Define 4; = [b]s and R; = [b;]<, for i € Z/nZ. To finish the proof of
the lemma, it is enough to show that the sets R;, A;,i € Z/nZ, are pairwise
disjoint. Indeed, if this is true, our previous remark on the cyclic order, and our
hypothesis 2. imply that ((R;);cz/nz, (Ai)icz/nz) is a hyperbolic configuration.

We have already proved that the sets R;,i € Z/nZ are pairwise disjoint.
We will also show that [b; ]< N [b;r]> = () for any j € Z/nZ. By hypothesis 2.,
[b; ]<N[b; ]~ = 0, as we are supposing that f is not recurrent. If [b; |« N[b; ]~ # 0
for some j # i, then [b;r]< C [b; ]<, j # i. Therefore, w([b;r]<) NS c I, j#1,
which contradicts our hypothesis 4..

We have proved that the sets R; are disjoint from the sets A4;,i € Z/nZ. So,
in order to finish, we only have to prove that the sets A;,i € Z/nZ are pairwise
disjoint.

If this is not the case, there would exist i # j, such that [b] ]~ N [bj]> # 0.
So, [bf]s U [b;r]> is a connected set containing a; U aj, and must therefore
intersect [b;-"]<, because of the cyclic order and hypothesis 2. We may of course
assume that [b;r]> N [bH]< # 0. Now, we have that [bj]> is a connected set

containing a; Ua; and must therefore intersect [bj]<. This contradiction proves
our claim. g
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4 Proof of the main result

This section is devoted to the proof of Theorem 1.2.

We fix an orientation preserving homeomorphism f : D — D which realizes
a cycle of links £ = ((@,w;))icz/nz. We recall that this means that there exists
a family (z;);ez/nz of points in I such that for all i € Z/nZ

li M(zi) = g, i (z1) = w.
Jm (=) = ai, i () = w

We also recall that
0= {o,w;:i€Z/nZ} C S,

and that we supppose that f can be extended to a homeomorphism of D U £.

4.1 The elliptic case.
Let us state our first proposition:

Proposition 4.1. If L is elliptic, then Fix(f) # (. Moreover, one of the
following holds:

1. f is recurrent,

2. L is a degenerate cycle.

As the proof is long, we will first describe our strategy. The first part of the
work consists in constructing a brick decomposition which is suitable for our
purposes. Once this done, we show that if f is not recurrent, the elliptic order
property gives rise to constraints on the order of the cycle of links £. We will
show (as a consequence of Lemma 3.2) that the only possibility for the order of
L is n = 4. The case n = 4 is special, as degeneracies may occur (see Figure
2, and the introduction, where we explain that non-degeneracy is needed for
obtaining the index result). For n = 4 we prove that Fix(f) # 0, and that if f
is not recurrent, then £ is degenerate.

I. Construction of the brick decomposition.

We first note that we may assume that n > 3: if n = 3, the definition of
cycle of links implies automatically that the points {«a;}, {w;} are all different,
and the proof follows from Le Calvez’s improvement to Handel’s theorem. As
we are dealing with the elliptic case, the only possible coincidences among the
points {a;}, {w;}, are of the form w;_o = «;. In particular, the points {w;} are
all different and for all i € Z/nZ we can take a neighbourhood U;" of w; in D in
such a way that U;" N UJTIr =0if i #j. We define U; = U, if a; = w;_», and
for all i € Z/nZ such that «; # w;_2 we take a neighbourhood U, of «; in D in
such a way that U7 NU;" =0 for all j € Z/nZ and U, NU; = for all i # j.

‘We suppose from now on that f is not recurrent.

We apply Lemma 2.9 and obtain families of closed disks (b;l)lEZ\{O},iEZ/nZ-
So, the disks in the family (b});>1 ez /nz, have pairwise disjoint interiors.
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Let Ireg be the set of i € Z/nZ such that «; # w;_a, or such that o; = w;_o
but there exists K > 0 such that

Uks i Int (0 5) N Ups 1 Int (0,7%) = 0.

Let ISiIlg

After discarding a finite number of disks, we can suppose that the disks bgl

with I > 1, i € Z/nZ, and bg_l with [ > 1,7 € Ireg, have pairwise disjoint
interiors.

If i € Igpg.
such that Int(b*',) N Int(b;7") # 0.

In the following lemma we refer to the family of integers (I;);ez/nz constructed
in Lemma 2.9.

be the complement of Ireg in Z/nZ.

then «; = w;_9 and for all k > 0 there exists ¥ > k, j' > k,

Lemma 4.2. Ifi € Ismg’ we can find sequences of free closed disks (¢*)m>0,
such that:

1. éncUr, =0,

2. there exists an increasing sequence (kI")m>o such that b;k:; Nne™ # 0 for

all m >0,
3. (b;kj2 ucyn (b;k:; uch)y =0 for all p #m,

4. there exists an increasing sequence (5" )m>o such that f~4=5"T1(z;) € ¢
for allm >0,

m

5. the sequence (cl

MY m>0 converges in the Hausdorff topology to wi—o = .

0. b:k_?; N ™ is an arc for all m > 0 (so, ¢ U b:k_?; is a topological closed

disk),
7. 8(Uk21b;k_2 UUm>0c™) is a one dimensional submanifold,

8. if x € D, then x belongs to at most two different disks in the family
{bF ek >1,m>0}

=271

Proof. Take i € Igjo and consider the family of closed disks (b )k>1 C U,
Asiel

sing there exists j? > 1, such that
Int(Ugs 100 5) N Int (77 ) # 0.
By Lemma 2.9, item 7, f(-li=7+1 (z) € Int(b/;j?)\(ulzlbﬁ_Q). We take an arc
79 € Tt 7 )\ Tt (U1 )
joining f(-L=7+1)(2;) and a point 20 € O(Uis1blL ). We define kY > 1 by
z? S b;kj;.
We define inductively for m > 0:
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Figure 7: The disks b;k_”ﬁ and ¢

1. U, C U;:Q = U, a neighbourhood of w;_» = a; in D such that

m

Ty O (Int(6") UTnt (6,7 ) = 0,

%

2. K,, > 0 such that for all k > K,, b/, Ub™* C U,

sm+1 1k =5t
3. j" > Ky, such that Int(Up>x,, /% o) NInt(b, " ) #0,
_gm+t1 -m
4. 4t C Int(b; TN\ (Upsk,, b ) an arc joining f(~—7i +1“)(zi) and a
point :Cszrl S 8(Uk2Kmb;k_2),

5. k"M > K, by B
xZ"'H € b;k—i2

The existence of K,, comes from the fact that both sequences (b,~');>1,
(b ,)i>1 converge in de Hausdorff topology to a; = w;_»; that of j;"“ from
the fact that i € Ising; that of fyZ"H from the choice of j;"“ and the fact

-m, —jm1
that £l 4D () € Int(b, 7" )\(Uisk,, b ), and that of 27" +! and k™ *!
follows from the choice of j;”“.
By thickening these arcs {7/}, we can construct disks {c/*} verifying all the

conditions of the lemma.
O

The proposition above allows us to construct a free brick decomposition
(V, E, B) such that:

1. for all i € Z/nZ and for all [ > 1, there exists bl € B such that b/ C b,

2. for all i € Iyeg and for all [ > 1, there exists b7! € B such that b, C b,

3. for all m > 0 and for all i € Ig there exists b;jim € B such that

7jm,
1 i
et Cb .

ing

II. The “domino effect” of the elliptic order property.
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Lemma 4.3. Take two indices i,j in Z/nZ, and two integers k and N. If
bk and bk+2 are contained in [bN]s, then there exists k' € 7 such that b} is

contamed in [bN]s for alll € Z/nZ.

Proof. We will show that if bk and bk %, are contained in [b}']s, then there

exists k& such that both bk+1 and b]+3 are contained in [b]s. If b¥ and b%,,
are contained in [b)], b} and bl , are contained in [b)]s for all l > k. By
Remark 2.10, we can find an arc

v :[0,1] = b)) U{wj, wjga}

joining w; and wjto. As n > 3, and the coincidences are of the form a; = w;_o,
we know that the points oj41,w;, aj43,w; 2 are all different. So, v separates

both aj41 from w;i1 and aji3 from w;i3. So, there exists k" > 0 such that
bk, J< N [bN]s # 0 and b5, 5]< N[bN]s # 0. We are done by induction, and by
taking £’ large enough.

(|

In the following lemma we make reference to the sequences (k™),,>0 and
(J")m>0 defined in Lemma 4.2.

- N
Lemma 4.4. For everyi € I there exists N > 0 such that [b; ’ |> contains

sing’
kN
b;% .

Proof. We will | prove the followmg stronger statement which implies 1mmed1—

ately that [b; i ]> contains b 5t there exists N > 0 such that f(c; )ﬂbz 12 # 0.
I. Let us begin by studylng the local dynamics of the brick decomp051tion

at a; = w2, i € Igjng. We define for all m >0,

Xy = b Uem
m =0y Uc¢;,

and we recall that every X,, is a closed disk (see Lemma 4.2). Then, for all
m > 0, o
fli72+ki 71(21',2) U fﬁlii]i —Ji (Zz) c X

So, given any two positive integers m > p, one has:
Unz1f*(Xp) N X # 0

and

Ukzlfk(Xm) n Xp 7& 0.

Besides, X,,, N X, = 0 and X,, and X, are topological closed disks. There-
fore, if we can find m > p > 0 such that both X, and X,, are free sets, f
would be recurrent by Proposition 2.5. So, we can suppose that for all m > 0
the set X, is not free. So, as for all m > 0 both b’ikm and c]* are free sets,

then either f(b;k";) Nne™ #0,or f(c™)N b;k:; # 0. If there exists m > 0 such
that f( ™) N bZ 12 # (), we are done. So, we may assume that for all m > 0,
f(bii2) Nef* # 0. Then, f(bfimg) ﬁb;jlm # () for all m > 0. In particular, [bfin;]>
contains b} for all [ > 0 and for all m > 0.
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IT. We will show that this implies that f is recurrent. As [bff2]> contains b¥
and b¥ o, for k > k™, Lemma 4.3 implies that for all m > 0 there exists I, > 0

such that [bfij]> contains b’ for all j € Z/nZ and for all | > I,,.
In particular, Remark 2.10 tells us that for all m > 0 there exists an arc

Ty [0,1] = [B¥)) U {wi—o,wi_s}

joining w;_o and w;_4, which implies that I';,, separates «;—; from «;_3 in D
(see Figure 8 (a) and observe that as n > 3 the points o;_3,w;—4, a;—1,w;_2 are
all different). As we are assuming that f is not recurrent, we obtain that the
closure of [bfimQ]g cannot contain both points «;_1 and «;_3.

We will suppose that for all m > 0, the closure of [bf;]g does not contain
one of the points ;1 and «;_3, and obtain a contradiction. As m > p implies

kP k™
[bz‘iz]ﬁ - [biiz]ﬁa

one of the points «;_; or «;_3 is not contained in the closure of any of the

sets [bfimQ]S, m > 0. Let us suppose that «;_s3 is not contained in [bfi]g
for any m > 0 (the proof is analogous in the other case). In particular, for
all m > 0, [bfimQ]g does not contain any of the bricks containing the orbit of
zi—3. We take a neighbourhood U of «;_3 in D such that U N [beQ]g = () and
such that U N Ul>k?bﬁ-72 = (). We take j > 0 such that f=9(z;_3) € U, and
an arc 3 : [0,1] — U joining a;_3 and f~7(z;_3). Take a brick b € B such
that f=7(zi—3) € b. As U;>1b}l 5 C [b]>, Remark 2.10 allows us to take an arc
v :[0,1] = [b]> Uw,—3 joining f~7(z;_3) and w;_3.

So, B.v separates a;_o from w;_o in D and

0
BN (Upskobi_g U b5 <) # 0,
which implies
0
v N (Ul>kobé—2 U [bfi2]§) # @a

because of our choice of U (see Figure 8 (b)). So,
b> NUpso[bl_ o)< # 0,
which implies that for some m > 0,

bl N b7 )< # 0.

So, b € [bfL]g, and [bfz;]g contains a brick containing one point of the orbit
of Zi—3-
This contradiction finishes the proof of the lemma.
O

Lemma 4.5. There exists k > 0 such that for any pair of indices i,j in Z/nZ,

the attractor [b; *]s contains bh.
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(a)

Figure 8: The proof of lemma 4.4

Proof. For all i € Ireg, we know that Ulzlb;_l C Ul>0[bi_l]> (note that this is
not necessarily the case if ¢ € Ising)- So, by Remark 2.10, there exists an arc
T [0,1] = Uiso[b;']s U {a, ws}

joining a; and w;. So, I'; separates both a;;—1 from w;_1 and ;41 from w;1 in
D. Therefore, there exists m > 0 such that [b; "]~ contains both b7, and b}" ;.
By Lemma 4.3, [b; "]~ contains bé» for all j € Z/nZ, and [ large enough.

For all 7 € [, the previous lemma tells us that there exists N > 0 such

sing>
that [b,

N N
: . k!
i 7i']5 also contains b;* and so once

N . EN -
" ]> contains b;",. Clearly, [b;

again, Lemma 4.3 implies that [b;jfv]z contains bé, for all j € Z/nZ, and [ large
enough. We finish by taking k sufficiently large. (|

II1. Constraints on the order of the cycle of links L.
We fix k > 0 such that for any pair of indices i, j in Z/nZ, [b; *]> contains
bf. We define

a; = (Umzkb;-m) NI

7 7

i €Z/nZ
(see Remark 2.10 for the definition of I';"). We may suppose that

U =D\ Uiez/nz ai

is simply connected. As a; C Up>ib)", and we are supposing that f is not
recurrent, we know that [b; %] C U for all i € Z/nZ.

Let ¢ : U — D be the Riemann map and consider the intervals J;,i € Z/nZ
defined in 3.1. We define I; as to be the connected component of S\ Uiez/nz Ji
following J;_o in the natural (positive) cyclic order on S* . So, each I; is a

closed interval, and we have:

Jico = I — Ji—y
for all i € Z/n’Z.

Lemma 4.6. For alli € Z/nZ,
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1. there exists j; € Z./n7Z such that p([b; *]<) N S* C I,
2. jie{i—1,i},
3. ’Lf (67} 7é Wi;—2, then ]z =1.

Proof. 1. If there exists = € ¢([b;*]<)NJ; for some j € Z/nZ, then [b;*]- N
a; # 0. As [b;*] is closed in D, and as a; C D, we obtain [b; ¥ Na; # 0,
a contradiction. So, ¢([b; ¥]) C Ujez/mzlj. If ©([b;¥]<) intersects I; and
Iy, k # j, then there exists two different indices iy and ¢; in Z/nZ such
that any arc joining J;, and J;, separates I; from Ij,. We take a crosscut

7 from a;, to a;, such that v C [b; *]s. So,

p(yNU) N (b *]<) # 0,

and consequently
b *]> N [b; 1< # 0,

which contradicts our assumption that f is not recurrent.

2. Take a crosscut v C [b;k]> from a;—3 to a;—1. Then, the elliptic order
property implies that a; belongs to the closure of only one of the two
connected components of U\v; the one to the right of 4. We use here
the fact that a; ¢ {w;_3,w;_1}. So, [b; *]< also belongs to the connected
component of U\7y which is to the right of 4. Consequently, ga([bi_k]<)
belongs to the connected component of D\ (y N U) which is to the right
of p(y N U). As p(yNU) is an arc from J;_3 to J;_1, the closure of

this connected component only contains I; and I;_;. So, we obtain j; €
{i—1,i}.

3. If ay; # w;—2, we can apply exactly the same argument than in the preced-
ing item, but using a crosscut v from a;_s to a;—1, obtaining j; = 7.
O

Remark 4.7. If we set b; = bi_k, and bj = bk | the bricks by, i € {ig,i1,92}
satisfy all the hypothesis of Lemma 3.2, where ig,¢1,i2 are any three different
indices € Z/nZ. Indeed, k is chosen so that 2. and 3. (a), hold, 3.(b) is granted
since a; C [b; |< for all i € Z/nZ, and 3. (c) is the content of item 1. in the
preceding lemma.

The second item in the preceding lemma gives us:
Corollary 4.8. If|i — 1| > 2, then j; # ji.

The constraints on the order £ follows.
Lemma 4.9. The order of L is either 4 or 5.

Proof. If n > 6, the sets {i,i — 1}, i € {0,2,4} are pairwise disjoint, and so
the three indices jg, j2,j4 given by Lemma 4.6 are different. This contradicts
Lemma 3.2. (|

Lemma 4.10. We have n = 4.
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Proof. We show that n = 5 also contradicts Lemma 3.2. If jg,j2,j3 are all
different, we are done because of Lemma 3.2. Otherwise, the only possibility is
that jo = js = 2 (see Lemma 4.6). But then, ji, j3 and js are different.

O

Lemma 4.11. L is degenerate.

Proof. We will show that if n = 4 and L is non-degenerate, we can also find
a triplet ig,41,i2 in Z/nZ such that the correspondent j; ., s € {0,1,2} are
different.

For a non-degenerate cycle of links, there can be at most two coincidences
of the type a; = w;—s. Furthermore, if o; = w;—2 and a;; = w;_s for some i # j,
then |i — j| = 1. Indeed, the points in ¢ are ordered as follows:

woiagﬁwliagﬁwgiaoﬁwgial — Wo,

and non-degeneracy means that we cannot have both w; = a;12 and w12 = oy,
for some i € Z/4Z. So, there exists | € Z/47 such that oy # w;—2 and ay41 #
wi—1. We can suppose without loss of generality that cg # wa, and oy # w3 (see
Figure 9). Items 2. and 3. in Lemma 4.6 imply that jo, j1, and js are different,
and we are done.

O

Qas

Figure 9: The case n =4

The following lemma finishes the proof of Proposition 4.1.
Lemma 4.12. If n = 4, then Fix(f) # 0.

Proof. We will be done by constructing a hyperbolic Repeller/Attractor config-
uration of order 2. We define

Ry =[by"]<, R1=1[b"]<, Ao = [b5]>, A1 = [bf]s.

By the choice of k, there exists two bricks ct, cé_l, contained in R;, i € Z/27

such that [¢]]s NA; #0,if j € {i,i—1}.
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Besides, the cyclic order of these sets is the following:

R()%Ao*)Rl*)Al*)Ro.

Indeed, we know that jo € {0,3}, jo € {2,1}, and the cyclic order of the
intervals J;, I;, i € Z/4Z is:

I()ng*)Il%J()%IQ‘)Jl‘)Ig*)JQ*)IO,

So, we just have to show that the sets R;, A;,7 € Z/27 are pairwise disjoint.
The choice of k implies that [b; *]< N [b5]s = 0 for all 4,5 in Z/4Z. As a

3
consequence, we just have to check Rg N Ry = (), and AgN Ay = (.
If this is not the case, [by "]« U[by *]< is a connected set separating [b¥]- and

[b5]>. Again by the choice of k we have:

([bg "< U [b3*]<) N b *]s # 0,

and as we are supposing that f is not recurrent,

bM< N by *]> # 0.

But then,

bM< N by "> # 0,

because [by ¥]~ contains [by ¥]. and therefore separates [b¥]~ and [b§]~, both of
which are contained in [b; *]s. O

4.2 The hyperbolic case.

Our next proposition finishes the proof of Theorem 1.2:
Proposition 4.13. If L is hyperbolic, then Fix(f) # 0.

We recall that the order of a hyperbolic cycle of links is an even number.
That is, from now on n = 2m, m > 2. The hyperbolic order property implies
that the only possible coincidences among the points «;,w;, i € Z/nZ are of the
form w;_9 = «;, for even values of i, or w;12 = «;, for odd values of i.

As the points {w;} are all different, we can take a neighbourhood U;" of w;
in D in such a way that that UZ-+ N U]Tir = 0 if i # j. For even values of i, we
define U, = U;[Q if oy = wi—2, and if a; # w;—o we take a neighbourhood U~
of a; in D in such a way that U, ﬁUjTir = { for any j, and U; NU; =0 if j # i.
Similarly, for odd values of 7, we define U, = U{:Q if oy = wjto, and if a; # wito
we take a neighbourhood U; of a; in D in such a way that U, N U;’ = () for
any j, and U; NU; =0 if j # 4.

We keep the assumption that f is not recurrent.

We apply Lemma 2.9 and obtain families of closed disks (bgl)leZ\{o},ieZ/QmZ-
So, the disks in the family (b});>1 ez /2mz have pairwise disjoint interiors.

Let Ireg be the set of even ¢ € Z/2mZ such that a; # w;_o, or such that
«; = wi—o but there exists K > 0 such that Uk>Kb;k_2 ﬂUk>Kb'i_k = (), together
with the set of odd i € Z/2mZ such that a; # wita, or such that a; = wita
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but there exists K > 0 such that Uk>Kb’i’i2 N Uk>Kb;_k =0. Let I be the

sing
complementary set of Ireg in Z/2mZ.

We can suppose that all the disks in the families (b}');>1,;e2/2mz (b’i_l)lzl,iejreg
have disjoint interiors.

We define i* = ¢ — 2 if 7 is even, and * = i + 2 if 4 is odd.

Lemma 4.14. Ifi el

sings We can find sequences of free closed disks (¢}')n>0,
satisfying :

1. CUL=U],

2. there exists an increasing sequence (kI'),>0 such that b;lf? Nc £ 0 for all
n >0,

3. (b;]fn Uel)n (b;]fp Ucl)y =0 for all n # p,

4. there exists an increasing sequence (jI')n>0 such that i (z;) €

77

5. the sequence (c}')n>0 converge in the Hausdorff topology to wi- = a,

6. b;lf Nci is an arc for all n > 0,
7. O(Up>1bk UU,>0ct) ds a one dimensional submanifold,

8. if x € D, then x belongs to at most two different disks in the family
{bF etk >1,n>0}.
Proof. Note that the local dynamics in a neighbourhood of a point «;,i € Ising
is exactly the same as that in the elliptic case. So, the same proof we did for
Lemma 4.2 works here as well.

O

We construct a maximal free brick decomposition (V, E, B) such that:

1. for all i € Z/2mZ and for all [ > 1, there exists bl € B such that b/’ C b,

2. for all i € Iyeg and for all | > 1, there exists b; ' € B such that b, C b; ",

3. foralln > 0andforalli € I there exists bi_j? € Bsuch that ¢} C bi_jin.

sing

- N
Lemma 4.15. Ifie I then there exists N > 0 such that [b, 7" |> contains

sing’
B
bt .

Proof. Fix an even index i € Igpo (the proof for odd indices is analogous).
The first part of the proof is identical to part I. in the proof of Lemma 4.4.
Indeed, this proof is local, that is, it does not depend on how the rest of the

N
point in £ are ordered. So, there are two possibilities: either f(c¥) N b;ka #0

N
or f (bik_Q) NelY # 0. In the first case we are done, as it implies immediately the
statement of the lemma. As a consequence, we may assume that for all n > 0,

[bf§2]> contains b} for all | > 0. We will show that this contradicts the fact that
f is not recurrent.
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With this assumption, for all n > 0 there exists an arc
k?
I, : [0, 1] — [bii2]> U {wi_g,wi}

joining w; o and w; (see Remark 2.10). So, the arc T, separates a;_1 from «;_3
inD for all n > 0 (see Figure 10, and note that the points a;_1, a;—3,w;—2,w;
are all different ).

We deduce (as we are supposing that f is not recurrent) that for any n > 0

[bfinQ]g cannot contain both a;_1 and «;_3. So, one of the points «;_1 or a;_3
is not contained in any of the sets [bng]g, n > 0. We will suppose that for all

n>0, a1 ¢ [bfinQ]g (the proof is analogous in the other case). We fix n > 0
and consider the connected set

kI
K = Uy bifz Ub;ls]<

We choose a neighbourhood U of «;_1 in D such that U N K = (. Then, we

take j > 0, such that f77(z;—1) € U and b € B such that f~7(z;_1) € b. We
take an arc v C U joining a;—; and f~7(z;_1), and an arc B C [b]> Uw;—1
joining f7(z;_1) and w;_1. We deduce that 7.6 N K # 0, and as v C U, we
have BN K # (). So, there exists [ > kI such that b € [b!_,]<, and consequently
ai—1 € [b!_,]<. This contradiction finishes the proof of the lemma.

O

Q2

Q1

Figure 10: The proof of lemma 4.15

Lemma 4.16. There exists k > 0 such that for all even values of i € Z/2mZ,
both attractors [b; ¥~ and [b; " ]s contain bF for alll € {i —2,i —1,i,i+ 1}.

Proof. If i € Ising’ the previous lemma tells us that there exists N > 0 such

—jN . N
that [b, ' |> contains bfiQ. So, we can find an arc

r:[o,1] — [b;jy]> U{wi—2,w;}

joining Wi—2 and w;. This arc separates both «;_; from w;_1, and «;4; from
wit1 in D (see Figure 10). As a consequence, both Uy>1[bF_;]< and Ug>1[bf,]<
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N
intersect I, and so there exists k > 0 such that b¥ | and b¥, belong to [b; " ]-.
Ifi—-1¢ Isingv we can show analogously that [b;_ji’l]> contains by for all
le{i—2,i—1,i,i+ 1} and some k > 0.

If i € Ivreg, we can find an arc

I': [0, 1] — Ul>0[bi_l]> U {ai,wi}

joining «; and w;. So, T separates (in ﬁ) both a;y1 from w;yq and a;—1 from
wi—1. So, both Up>1[bF_]< and Up>1[bF, |]< intersect I', and there exists k, N >
0 such that [b; V]s N [bF1]< # 0 and [b; V]s N [bE,]< # 0. Once b!_; and bl
belong to [b; V], we can find an arc

I':[0,1] — [bi_N]> U{wi—1,wit1}

joining w; 1 and w;11. So, IV separates a;_o from w; o in ﬁ, and one obtains
br o € by N1., for some k > 0. We obtain the result by sufficiently enlarging
k. O

We fix k > 0 as in Lemma 4.16.

Lemma 4.17. There exists p > k such that [b;k]<ﬂb;<l =0 for alli,j in Z/2mZ
andl > p.

Proof. Fix i € Z/2mZ even. There exists an arc
%+ [0,1] = 07 *]s U {wisr, wior}

joining w;11 and w;_1. As the three points a;,w;y1, and w;_1 are different, ;
separates o from any w; j ¢ {i —2,i—1,i+ 1} (in D) .

So, there exists I; > k such that v; separates [b; *] from any b}l with [ > [;
and j ¢ {i —2,i — 1,7+ 1}. Besides, we already know that b;li N bé; = if
je{i—2,i—1,i+ 1}, because b: contains bé In particular, b;l N b;-l = () for
>0 andje{i—2i—1,i+1)}.

If 7 is odd, we can do the same argument with an arc

Yie1 1 [0,1] = [0 *]5 U {wi, wia}

joining w; and w;—_s.

We finish by taking p = max{l;,i € Z/2mZ}.

Thanks to the two preceeding lemmas we may fix k£ > 0 such that:

1. both attractors [b; *]> and [b; %]~ contains bf for all even values of i, and
forall 1 € {i —2,i—1,i,i+ 1},
2. [b; ¥« Nb! =0 for all i,j in Z/2mZ, and | > k.

3

We define
a; = FZF N Ulzkb;—l

for all ¢ € Z/2mZ. The cyclic order of the sets {a;} satisfies:

A;—2 — Qi1 — G4,
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for all even values of . We may suppose that each a; is an arc, and so U =
D\ Uiez/2mz @i is simply connected. Let ¢ : U — DD be the Riemann map and
consider the intervals {.J;} defined in 3.1.

For all even i, we define I; as to be the connected component of Sl\UZGZ/QmZ
J; following J;_o in the natural (positive) cyclic order on S*. We define I; 11, as
to be the connected component of S*\ Uiez/2mz Ji following I;. So, for all even
i we have:

Ji—o = I; — Ji+1 — Ii+1 — J;.
Lemma 4.18. For alli € Z/2mZ,
1. b MU,

2. ifi is even, then p([b; *]<)NS* C LUIL,_; , and gp(b;k1<)ﬁ51 C L;UILiqq,

3. there exists j; such that o([b; *]<)NS* C I, (so, ifi is even, j; € {i,i—1},
Jic1 € {i,i+1}).

Proof. 1. This is trivial because of the choice of k > 0.

2. First, we show that go([bi_k]<) C Ujez/amzl;j. Otherwise, there exists

x € p([b7*]2)NJ; for some j € Z/2mZ. So, [b; *]~ contains a point in a;.
As [b; "] is a closed subset of D, and a; C D we obtain [b; *]. Na; # 0,
contradicting the previous item.

Fix if i € Z/2mZ even. Take a crosscut v C [b; *]s from w; 1 to wii1.
So, a; belongs to the closure of only one of the connected components of
D\7; the one to the right of 7. So, ¢([b; ¥]<) belongs to the connected
component of D\¢(yNU) which is to the right of o(yNU). As o(yNU) is
an arc joining J;_; and J; 41, the cyclic order implies that ¢([b; *]<)NS"* C
L;Ul;_q.

The statement for ¢ — 1 is proved analogously.

3. Suppose i is even (as before, the other case is analogous). The previous
item implies that if gp([bi_k]<) intersects I; and I;, j # [, then {j,1} =
{i,i—1}.

Take a crosscut v C [b; *]s from w;_1 to w;_s. Then, p(y N U) separates

inD I,_; from I;. This gives us

b7 1< N (b7 # 0,

a contradiction.

O

Remark 4.19. If we set a} = ay;, b; = by,*, and b = bk, for all i € Z/mZ,
then af, b;, b, i € Z/mZ, satisfy hypothesis 1. to 3. of Lemma 3.3. So, if
we prove that jo; = 2i for all i € Z/mZ, then Fix(f) # 0. Indeed, the sets

ai,i € Z/mZ are cyclically ordered as follows:

ap = a) = Ay — =S5 > Ay > Ay
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Besides, if we set J] = Jo;, for all ¢ € Z/mZ, we have:
! !

i1 7 IQ»L' — Ji5

for all i € Z/2mZ, and so jo; = 2i is exactly hypothesis 4. of Lemma 3.3.

We are now ready to prove Proposition 4.13:

Proof. Because of the previous remark, it is enough to show that jo; = 27 for all
i € Z/mZ. We will show that if this is not the case, we contradict Lemma 3.2.
Lemma 4.18, tells us that jo; € {2¢,2i — 1}. Let us assume that jo; = 2i — 1.
This implies that jo;—2,j2;—1, and jo; are different. Indeed, by Lemma 4.18
Joi—o € {20 — 3,20 — 2}, joi—1 € {2i,2i + 1}, and by assumption jo; = 2i — 1.
Besides, we have:

e [by"]> contains bk, bk, |, and bk, ,,
—k e bk Bk k

o [b3;" ] contains bs,, b5, |, and b5, 5,
—k . k k

o [by;",]> contains both b3;_, and bs;_;.

So, as jai—2, joi—1, and jo; are different, if we show that [b;i112]> also contains

b’gi, we contradict Lemma 3.2. Take a crosscut v C [b;z-IiQ]> from ag;_o to as;_4.

Then, @(yNU) separates Iy;—1 from Jo;. On the other hand, o([b%]<) joins
this both sets, as we are assuming js; = 2 — 1, and by definition of Js;. So,

e([b5]<)Ne(yNU) # 0,

and we are done.

5 Proof of Lemma 1.3

We finish by proving Lemma 1.3, showing that our theorem is optimal.
We begin with a perturbation lemma.

Let (¢t)ter be the flow in D whose orbits are drawn in the figure below:
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We say that a flow (¢1)ier in D is locally conjugate to (¢r)ier at zo if there
exist an open neighbourhood U of zy and a homeomorphism A : D — U such
that h(0) = zg and h=tph = ¢, for all t € R.

If ¢ : D — D is a homeomorphism, we write a(z, ¢) for the set of accumula-
tion points of the backward ¢- orbit of ;, and w(z, ¢) for the set of accumulation
points of the forward ¢- orbit of x.

Lemma 5.1. Let ¢ : D — D be the time one map of flow which is locally
conjugate to (¢¢)ier at zo, and U an open neighbourhood of zo where h™toh =
¢1. Then, for any x,y € U such that w(x,) = zo = aly,p), there exists an
orientation preserving homeomorphism g : D — D supported in the union of two
free disjoint open disks such that

O‘(‘T’(Pog) = Oé(.%',(p), w(m,apog) = w(y,<p).

Proof. Let A C D be the straight oriented line through 0 with tangent unit
vector €™/ and let L (resp. R) be the connected component of U\h(A) which
is to the left (resp. the right) of h(A).

Note that given two points z1, z2 in the same connected component C' of
U\R(A) that do not belong to the same orbit of (¢;)ier there exists an arc
§ C C joining zp and z; such that ¢(6) N d = (. Besides, any z € U such that
w(x, ) = zo belongs to L, and any y € U such that a(y, ¢) = zo belongs to R.
Moreover, there exist z € L and n > 0 such that ©"(z) € R.

So, we can take a free arc §; C L joining z and z and a free arc do C R
joining ©"(z) and ¢~ (y). Moreover, we may suppose that

S10{p 7" (x) : k> 0} = 52n{"(y) : k > 0} = (6:U82)N{"(2) : 0 < k < n} = 0.
We thicken the §,’s into open free and disjoint disks D1 C L, Dy C R, such that
Din{e F(x) : k> 0} = Doan{e®(y) : k> 0} = (D1UDo)N{¢*(2) : 0 < k < n} = 0.

Finally, we construct an orientation preserving homeomorphism g : D — D
supported in Dy U Dy such that g(z) = z and g(¢"(2)) = ¢~ !(y). We obtain

a(z,pog)=a(r,p), wx,eog)=wy,p),

as we wanted.
O

Remark 5.2. In fact, given a finite set of points z;,y; € U,7 = 1,...,n which
belong to different orbits of (¢:)ter and such that w(x;) = z0 = a(yi), i =
1,...,n, there exists an orientation preserving homeomorphism g : D — D
supported in a finite union of free disjoint open disks such that

oz, pog) =a(zie), wr,eog)=wyy),

i = 1,...,n. Indeed, we choose different points z; € L and positive integers
n; > 0 such that ¢"(z;) € R. Then, we take pairwise disjoint arcs &} joining
z; and z; and 7 joining ¢™(2;) and ¢~ !(y;) in such a way that all these arcs
are disjoint from the backward y-orbit of z;, the forward ¢-orbit of y; and the
transitional orbits ¢(z;),. .., 9" " 1(z;). This allows us to construct the desired
perturbation g.
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Given a family K = ((as,w;))iez/nz of pairs of points in S*, we note A; the
oriented segment joining «; and w;. We say that z € D is a multiple point if
z belongs to at least two different A;’s . Let z be a multiple point, and let
I'={ie€Z/nZ: zec A;}. We say that a multiple point z € D has zero-index
if there exists a straight oriented line A containing z such that the algebraic
intersection number A AA; =1 for all ¢ € I.

We say that a pair (ag,wy) € K is i-separated if oy and wy belong to
different connected components of S*\{a;,w;} .

A degeneracy of K is a pair of elements of the family (o, w;) and (o, w;) such
that a; = w; and o = w;. We say that a degeneracy is trivial if the following
holds: the connected component of S\ {«;,w;} containing oy is independent of
the i-separated pair (o, wr) € K.

We will deduce Lemma 1.3 from the following lemma.

Lemma 5.3. Let K = ((ov,w;))iez/nz be a family of pairs of points in S*. We
suppose that:

1. every multiple point is of zero index;

2. every polygon P C D whose boundary is contained in Ujcz,/n70; has zero
indez,

3. every degeneracy is trivial.
Then, there exists a flow (pt)ter in D such that:

1. (pt)ter is locally conjugate to (¢1)ier at every singularity zo;

2. for all i € Z/nZ there exist two points z; ,z7 € D such that a(z;) = a;

and w(z) = w;;

3. the 2n points z; , z;', i € Z/nZ are different.

K2

Proof. First suppose that there are no degeneracies in . In this case, the orien-
tations of the A;’s induce a flow (¢¢)ter on U;ez/nzA; with a singularity at each
multiple point. By hypothesis 1., we may extend this flow to a neighbourhood
of every multiple point in such a way that it is locally conjugate to (¢;)icr.
Moreover, by hypothesis 2. we may extend (¢¢)tcr to the rest of D without
singularities, and we are done.

If K contains one degeneracy (a;,w;) = (wj, o), we “open it up” as follows.
We consider the family of segments Uyez/n7, 1Ak and a simple curve ; joining
aj and w; such that:

1. Y M Al = {ai,wi},

2. v, NALN D # 0 if and only if (o, wy) is j- separated, and in this case
#{’Yj N Ag ﬂD} =1,

3. v; does not intersect any multiple point.
Now, the orientations of the A;’s i # j, and the orientation of 7; induce a

flow (@¢)ter on Ujez/nz,i2;A: Uy; with a singularity at each multiple point of
Uiez/nz,i2Ai and also at the intersection points of ; with the A;’s, @ # j.
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Note that as y; does not intersect any multiple point, we may extend (¢;)rer
to a neighbourhood of every multiple point of Uycz/nz 1+ A% in such a way that
it is locally conjugate to (¢¢)icr. Moreover, a point zg € 7; belongs to at most
one Ay, k # j, and the intersection is transversal by item 2. above. So, we may
as well extend (¢1):er to a neighbourhood of zg so as to have local conjugation
with (¢¢)ier as well. As degeneracies are trivial, we can extend (¢;)er to the
rest of D without singularities.

If more than one degeneracy occurs, triviality implies that they are disjoint.
That is, if (ev,wi) = (wj,@;), and (o, wi) = (wi, o), then (o, w;) is not k-
separated. So, we can “open up” both degeneracies in such a way that v;Ny, = 0,
and construct our flow (p:)ter analogously. O

We deduce:

Corollary 5.4. With the same hypothesis of the preceeding lemma, there exists
a fixed-point free orientation preserving homeomorphism f : 1D — D that realizes

K.

Proof. Let ¢ be the time one map of the flow given by the preceeding lemma.
By simultaneous applications of Lemma 5.1, we can construct an orientation
preserving homeomorphism ¢ : D — I supported in disjoint open free disks
such that

lim (pog)*(z7) = lim (pog)f(z)=ws,
k——oco k—o0
(see as well the remark following Lemma 5.1).

Then, the homeomorphism ¢ o g realizes K. Moreover, as we have local
conjugation to the flow (¢¢):er at every singularity of ¢, and pog = ¢ in a
neighbourhood of each singularity, we can further perturb ¢ o g into a homeo-
morphism f : D — D realizing K and which is fixed point free.

O

This last lemma finishes the proof of Lemma 1.3:

Lemma 5.5. If a multiple point has non-zero index, then there exists a sub-
family of IC forming an elliptic cycle of links.

Proof. Let x be a multiple point of non zero index, and let I = {i € Z/nZ: x €
A;}. As z has non-zero index, there exists indices ¢, j € T such that the oriented
interval in S! joining «; and «; contains wy, k € I. Then, £ = (o, w))iezy3z
is an elliptic cycle of links, where (af,w() = (a4, w;), (af,w)) = (e, w;), and
(0, ) = (g ).

O
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