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Abstract. We prove that a homeomorphism of the torus homotopic to the
identity whose rotation set is reduced to a single totally irrational vector is
chain-recurrent. In fact, we show that pseudo-orbits can be chosen with a
small number of jumps, in particular, that the nonwandering set is weakly
transitive. We give an example showing that the nonwandering set of such a
homeomorphism may not be transitive.

1. Introduction

We consider Homeo0(T2) to be the set of homeomorphisms homotopic to the

identity. We shall say that f ∈ Homeo0(T2) is non-resonant if the rotation set

of f is a unique vector (α, β) and the values 1, α, β are irrationally independent

(i.e. α, β and α/β are not rational). This ammounts to say that given any lift F

of f to R2, for every z ∈ R2 we have that:

(1) lim
n→∞

F n(z)− z
n

= (α, β)(mod Z2)

In general, one can define the rotation set of a homeomorphism homotopic

to the identity (see [MZ]). In fact, although we shall not make it explicit, our

constructions work in the same way for homeomorphisms of the torus whose

rotation set is contained in a segment of slope (α, β) with α, β and α/β irrational

and not containing zero.

Non-resonant torus homeomorphisms1 have been intensively studied in the last

years looking for resemblance between them and homeomorphisms of the circle

with irrational rotation number (see [K2], [L], [J1]) and also constructing exam-

ples showing some difference between them (see [F], [BCL], [BCJL], [J2]).

17 march 2011.
1These are called irrational pseudo-rotations by several authors, but since some of them use

the term exclusively for conservative ones, we adopt the definition used in [K1].
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In [K1] the possible topologies of minimal sets these homeomorphisms admit

are classified and it is shown that under some conditions, these minimal sets are

unique and coincide with the non-wandering set. However, there is one kind

of topology of minimal sets where the question of the uniqueness of minimal

sets remains unknown. When the topology of a minimal set is of this last kind,

[BCJL] constructed an example where the non wandering set does not coincide

with the unique minimal set, in fact, they construct a transitive non-resonant

torus homeomorphism containing a proper minimal set as a skew product over

an irrational rotation.

A natural example of non-resonant torus homeomorphism is the one given by

a homeomorphism semiconjugated to an irrational rotation by a continuous map

homotopic to the identity. In [J1] it is proved that a non-resonant torus home-

omorphism is semiconjugated to an irrational rotation under some quite mild

hypothesis.

Under the hypothesis of being semiconjugated by a monotone map2 which has

points whose preimage is a singleton, it is not hard to show the uniqueness of a

minimal set (see for example [K1] Lemma 14). However, as shown by Roberts

in [R], a continuous monotone map may be very degenerate and thus even if

there exist such a semiconjugation, it is not clear whether there should exist a

unique minimal set nor the kind of recurrence the homeomorphisms should have.

Moreover, for general non-resonant torus homeomorphisms, there does not exist

a semiconjugacy to the irrational rotation (even when there is “bounded mean

motion”, see [J2]).

Here, we give a simple and self-contained proof (based on some ideas of [K1]

but not on the classification of the topologies of the minimal sets) of a result

which shows that even if there may be more than one minimal set, the dynamics

is in some sense irreducible. Clearly, transitivity of f may not hold for a general

non-resonant torus homeomorphism (it may even have wandering points, as in

the product of two Denjoy counterexamples; some more elaborate examples may

be found in [K1]), but we shall show that, in fact, these homeomorphisms are

weakly transitive.

Theorem A. Let f ∈ Homeo0(T2) be a non-resonant torus homeomorphism,

then, f |Ω(f) is weakly transitive.

Recall that for h : M →M a homeomorphism, and K an h−invariant compact

set, we say that h|K is weakly transitive if given two open sets U and V of M

2A monotone map is a map whose preimages are all compact and connected.
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intersecting K, there exists n > 0 such that hn(U) ∩ V 6= ∅ (the difference with

being transitive is that for transitivity one requires the open sets to be considered

relative to K).

This allows to re-obtain Corollary E of [J1]:

Corollary 1.1. Let f ∈ Homeo0(T2) be a non-resonant torus homeomorphism

such that Ω(f) = T2. Then, f is transitive.

In fact, as a consequence of weak-transitivity, we can obtain also the more well

known concept of chain-transitivity for non-resonant torus homeomorphisms.

Corollary 1.2. Let f ∈ Homeo0(T2) be a non-resonant torus homeomorphism,

then, f is chain-recurrent.

Recall that a homeomorphism h of a compact metric space M is chain-recurrent

if for every pair of points x, y ∈M and every ε > 0 there exists an ε−pseudo-orbit

x = z0, . . . , zn = y with n ≥ 1 (i.e. d(zi+1, h(zi)) < ε).

Proof.Consider two points x, y ∈M and ε > 0.

We first assume that x 6= y are both nonwandering points which shows the

idea in a simpler way. From Theorem A we know that there exists a point z and

n > 0 such that d(z, f(x)) < ε and d(fn(z), f−1(y)) < ε. We can then consider

the ε−pseudo-orbit: {x, z, . . . , fn(z), y}.
Now, for general x, y ∈ T2 we consider n0 ≥ 1 such that d(fn0(x),Ω(f)) < ε/2

and d(f−n0(y),Ω(f)) < ε/2. Now, by Theorem A there exists z ∈ T2 and n > 0

such that d(z, fn0(x)) < ε and d(fn(z), f−n0(y)) < ε. Considering the follow-

ing ε−psudo-orbit {x, . . . , fn0−1(x), z, . . . , fn(z), f−n0+1(y), . . . , y} we obtain a

pseudo-orbit from x to y and thus proving chain-recurrence.

�

Remark 1. We have proved that in fact, for every ε > 0 the pseudo-orbit can be

made with only two “jumps”.

As a consequence of our study, we obtain the following result which may be of

independent interest:

Proposition B. Let f ∈ Homeo0(T2) be a non-resonant torus homeomorphism

and Λ1 a compact connected set such that f(Λ1) ⊂ Λ1. Then, for every U con-

nected neighborhood of Λ1, there exists K > 0 such that:
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- If Λ2 is a compact set which has a connected component in the universal

cover of diameter larger than K then3,

U ∩ Λ2 6= ∅.

One could wonder if the stronger property of Ω(f) being transitive may hold.

However, in section 4 we present an example where Ω(f) is a Cantor set times S1

where the nonwandering set is not transitive.

Acknowledgements: I would like to thank Sylvain Crovisier and Martin Sam-

barino for their support and their important corrections to this text. I would also

like to thank Tobias Jager who kindly exchanged communications related to this

result.

2. Reduction of the proofs of Theorem A and Proposition B

In this section we shall reduce the proofs of Theorem A and Proposition B to

Proposition 2.1 and its Addendum 2.2.

We shall use the word domain to refer to an open and connected set. We

shall say a domain U ∈ T2 is inessential, simply essential or doubly essential

depending on whether the inclusion of π1(U) in π1(T2) is isomorphic to 0,Z or

Z2 respectively4. If U is simply essential or doubly essential, we shall say it is

essential.

Remark 2. Notice that if U and V are two doubly essential domains, then it holds

that U ∩ V 6= ∅. This is because the intersection number of two closed curves is

an homotopy invariant and given two non-homotopic curves in T2, they have non-

zero intersection number, thus, they must intersect. Since clearly, being doubly

essential, U and V contain non homotopic curves, we get the desired result.

♦

So, we get that Theorem 1 can be reduced to the following proposition.

Proposition 2.1. Given f ∈ Homeo0(T2) a non-resonant torus homeomorphism

and U an open set such that f(U) ⊂ U and U intersects Ω(f), then we have that

U has a connected component which is doubly essential.

Almost the same proof yields also the following statement which will imply

Proposition B:

3This holds if Λ2 is a connected set such that f i(Λ2) ⊂ Λ2 for some i ∈ Z for example.
4In [K1] these concepts are called trivial, essential and doubly-essential.
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Addendum 2.2. For f as in Proposition 2.1, if Λ is a compact connected set

such that f(Λ) ⊂ Λ, then, for every U connected neighborhood of Λ, we have that

U is doubly-essential.

Notice that the fact that f(Λ) ⊂ Λ for Λ compact implies that Λ ∩ Ω(f) 6= ∅.

Proof of Theorem A and Proposition B. Let us consider two open sets

U1 and V1 intersecting Ω(f), and we consider the sets U =
⋃
n>0 f

n(U1) and

V =
⋃
n<0 f

n(V1). These sets verify that f(U) ⊂ U and f−1(V ) ⊂ V and both

intersect the nonwandering set.

Proposition 2.1 (applied to f and f−1) implies that both U and V are doubly

essential, so, they must intersect. This implies that for some n > 0 and m < 0

we have that fn(U1) ∩ fm(V1) 6= ∅, so, we have that fn−m(U1) ∩ V1 6= ∅ and thus

Ω(f) is weakly transitive.

Proposition B follows directly from Addendum 2.2 since given a doubly-essential

domain U in T2, there exists K > 0 such that its lift p−1(U) intersects every

connected set of diameter larger than K.

�

Remark 3. Notice that in higher dimensions, Remark 2 does not hold, in fact,

it is easy to construct two open connected sets containing closed curves in every

homotopy class which do not intersect. So, even if we could show a result similar

to Proposition 2.1, it would not imply the same result.

♦

3. Proof of Proposition 2.1

Consider f ∈ Homeo0(T2) a non-resonant torus homeomorphism, and let us

assume that U is an open set which verifies that f(U) ⊂ U and such that U ∩
Ω(f) 6= ∅.

Since U∩Ω(f) 6= ∅, for someN > 0 we have that there is a connected component

of U which is fN -invariant. We may thus assume from the start that U is a domain

such that f(U) ⊂ U and U ∩ Ω(f) 6= ∅.
Let p : R2 → T2 be the canonical projection. Consider U0 ⊂ p−1(U) a connected

component. We can choose F a lift of f such that F (U0) ⊂ U0.

We shall denote Tp,q to the translation by vector (p, q), that is, the map from

the plane such that Tp,q(x) = x+ (p, q) for every x ∈ R2.

Lemma 3.1. The domain U is essential.
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Proof.Consider x ∈ U0 such that p(x) ∈ Ω(f). And consider a neighborhood

V ⊂ U0 of x. Assume that there exists n0 > 0 and (p, q) ∈ Z2 \ {(0, 0)} such

that F n0(V ) ∩ (V + (p, q)) 6= ∅. Since U0 is F -invariant, we obtain two points in

U0 which differ by an integer translation, and since U0 is connected, this implies

that U contains a non-trivial curve in π1(T2) and thus, it is essential.

To see that there exists such n0 and (p, q), notice that otherwise, since x is not

periodic (because f is a non-resonant torus homeomorphism) we could consider a

basis Vn of neighborhoods of p(x) such that fk(Vn)∩ Vn = ∅ for every 0 < k ≤ n.

Since x is non-wandering, there exists some kn > n such that fkn(Vn) ∩ Vn 6= ∅,
but since we have that F kn(Vn)∩ (Vn + (p, q)) = ∅ for every (p, q) ∈ Z2 \ {(0, 0)},
we should have that F kn(Vn) ∩ Vn 6= ∅ for every n. Since kn →∞, we get that f

has zero as rotation vector, a contradiction.

�

Remark 4. Clearly, this result holds equally for any domain containing a compact

connected forward invariant set in its interior since we used only the fact that U

had points which where non-wandering and thus this Lemma works also in the

hypothesis of Addendum 2.2

♦

We conclude the proof of by showing the following Lemma which has some

resemblance with Lemma 11 in [K1].

Lemma 3.2. The domain U is doubly-essential.

Proof.Assume by contradiction that U is simply-essential.

Since the inclusion of π1(U) in π1(T2) is non-trivial by the previous lemma,

there exists a closed curve η in U such that when lifted to R2 joins a point x ∈ U0

with x+ (p, q) (which will also belong to U0 because η is contained in U and U0

is a connected component of p−1(U)).

We claim that in fact, we can assume that η is a simple closed curve and such

that g.c.d(p, q) = 1 (the greatest common divisor). In fact, since U is open,

we can assume that the curve we first considered is in general position, and by

considering a subcurve, we get a simple one (maybe the point x and the vector

(p, q) changed, but we shall consider the curve η is the simple and closed curve

from the start). Since it is simple, the fact that g.c.d(p, q) = 1 is trivial.

If η0 is the lift of η which joins x ∈ U0 with x+(p, q), we have that it is compact,

so, we get that



RECURRENCE OF NON-RESONANT HOMEOMORPHISMS ON THE TORUS 7

η̃ =
⋃
n∈Z

Tnp,nqη0

is a proper embedding of R in R2. Notice that η̃ ⊂ U0.

By extending to the one point compactification of R2 we get by using Jordan’s

Theorem (see [M] chapter 4) that η̃ separates R2 in two disjoint unbounded

connected components which we shall call L and R and such that their closures

L ∪ η̃ and R ∪ η̃ are topologically a half plane (this holds by Shönflies Theorem,

see [M] chapter 9).

Consider any pair a, b such that5 a
b
6= p

q
, we claim that Ta,b(η̃) ∩ U0 = ∅.

Otherwise, the union Ta,b(η̃) ∪ U0 would be a connected set contained in p−1(U)

thus in U0 and we could find a curve in U0 joining x to x + (a, b) proving that

U is doubly essential (notice that the hypothesis on (a, b) implies that (a, b) and

(p, q) generate a subgroup isomorphic to Z2), a contradiction.

Translations are order preserving, this means that Ta,b(R) ∩R and Ta,b(L) ∩ L
are both non-empty and either Ta,b(R) ⊂ R or Ta,b(L) ⊂ L (both can only hold

in the case a
b

= p
q
). Also, one can easily see that Ta,b(R) ⊂ R implies that

T−a,−b(L) ⊂ L.

Now, we choose (a, b) such that there exists a curve γ from x to x + (a, b)

satisfying:

- Ta,b(η̃) ⊂ L.

- γ is disjoint from Tp,q(γ).

- γ is disjoint from Ta,b(η̃) and η̃ except at its boundary points.

We consider η̃1 = Ta,b(η̃) and η̃2 = T−a,−b(η̃). Also, we shall denote γ̃ =

γ ∪ T−a,−b(γ) which joins x− (a, b) with x+ (a, b).

We obtain that U0 is contained in Γ = Ta,b(R)∩T−a,−b(L) a band whose bound-

ary is η̃1 ∪ η̃2.

Since U0 is contained in Γ and is F -invariant, for every point x ∈ U0 we have that

F n(x) is a sequence in Γ, and since f is a non-resonant torus homeomorphism,

we have that lim Fn(x)
n

= lim Fn(x)−x
n

= (α, β) is totally irrational.

However, we notice that Γ can be written as:

Γ =
⋃
n∈Z

Tnp,nq(Γ0)

5We accept division by 0 as being infinity.
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where Γ0 is a compact set in R2. Indeed, if we consider the curve γ̃ ∪ Ta,b(η0) ∪
Tp,q(γ̃)∪ T−a,−b(η0) we have a Jordan curve. Considering Γ0 as the closure of the

bounded component we have the desired fundamental domain.

So, if we consider a sequence of points xn ∈ Γ such that lim xn

n
exists and is

equal to v it will verify that the coordinates of v have the same proportion as

p/q, thus cannot be totally irrational. This is a contradiction and concludes the

proof of the Lemma.

�

Remark 5. Considering Λ as in Addendum 2.2 we see that this proof works equally

well since we only used that U0 contained points which remained there to create

the non wanted rotation vector and not that the whole U0 was invariant.

♦

4. An example where f |Ω(f) is not transitive

The example is similar to the one in section 2 of [J2], however, we do not know

a priori if these specific examples admit or not a semiconjugacy.

Consider g1 : S1 → S1 and g2 : S1 → S1 Denjoy counterexamples with rotation

numbers ρ1 and ρ2 which are irrationally independent and have minimal invariant

sets M1 and M2 properly contained in S1. We shall consider the following skew-

product map fβ : T2 → T2 given by:

fβ(x, y) = (g1(x), β(x)(y))

where β : S1 → Homeo+(S1) is continuous and such that β(x)(y) = g2(y) for

every (x, y) ∈M1 × S1.

The same proof as in Lemma 2.1 of [J2] yields:

Lemma 4.1. The map fβ is a non-resonant torus homeomorphism and M1×M2

is the unique minimal set.

Proof.The proof is the same as the one in Lemma 2.1 of [J2]. Indeed any

invariant measure for f must be supported in M1 ×M2 and the dynamics there

is the product of two Denjoy counterexamples and thus uniquely-ergodic. Since

rotation vectors can be computed with ergodic measures, we also get that fβ has

a unique rotation vector (ρ1, ρ2) which is totally irrational by hypothesis.
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�

Clearly, if we restrict the dynamics of fβ to M1 × S1 it is not hard to see that

the nonwandering set will be M1×M2 (it is a product system there). So, we shall

prove that if β is properly chosen, we get that Ω(fβ) = M1 × S1. In fact, instead

of constructing a specific example, we shall show that for “generic” β in certain

space, this is satisfied, this will give the existence of such a β.

First, we define B to be the set of continuous maps β : S1 → Homeo+(S1)

such that β(x) = g2 for every x ∈ M1. We endow B with the topology given

by restriction from the set of every continuous map from S1 to Homeo+(S1).

With this topology, B is a closed subset of the set of continuous maps from

S1 → Homeo+(S1) which is a Baire space, thus, B is a Baire space.

So, the existence of the desired β is a consequence of:

Lemma 4.2. There exists a dense Gδ (residual) subset of B of maps such that

the induced map fβ verifies that Ω(fβ) = M1 × S1.

Proof.First, we will prove the Lemma assuming the following claim:

Claim. Given β ∈ B, x ∈M1 × S1, ε > 0 and δ > 0 there exists β′ ∈ B which is

δ−close to β such that there exists k > 0 with fkβ′(B(x, ε)) ∩B(x, ε) 6= ∅.

Assuming this claim, the proof of the Lemma is a standard Baire argument:

Consider {xn} ⊂M1×S1 a countable dense set. Using the claim, we get that the

sets Bn,N consisting of the functions β ∈ B such that there exists a point y and

a value k > 0 such that y and fkβ (y) belong to B(xn, 1/N) is a dense set. Also,

the set Bn,N is open, since the property is clearly robust for C0 perturbations of

fβ. This implies that the set R =
⋂
n,N Bn,N is a residual set, which implies, by

Baire’s theorem that it is in fact dense.

For β ∈ R we get that given a point x ∈ M1 × S1 and ε > 0, we can choose

xn ∈ B(x, ε/2) and N such that 1/N < ε/2, so, since β ∈ Bn,N we have that

there exists k > 0 such that fkβ (B(x, ε)) ∩ B(x, ε) 6= ∅ proving that M1 × S1 is

nonwandering for fβ as desired.

Proof of the Claim. The point x ∈ M1 × S1 can be written as (s, t) in the

canonical coordinates.

Consider the curve γ = (s − ε, s + ε) × {t} ⊂ B(x, ε). It is easy to see6,

using the properties of g1 that there exists (a, b) ⊂ (s − ε, s + ε) such that

6Consider for example, (a, b) contained in a wandering interval contained in (s− ε, s + ε).
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gkn(a, b) ⊂ (s − ε, s + ε) for kn → ∞. We can also assume that both a and

b have disjoint orbits under g1 and do not belong to M1. We shall call γ′ ⊂ γ to

the curve γ′ = (a, b)× {t}.
We can assume that fkn

β (γ′) ∩ B(x, ε) = ∅ for every n > 0, otherwise, there is

nothing to prove.

We shall thus consider a δ−perturbation of β such that it does not modify

the orbit of (a, t) but moves the orbit of (b, t) in one direction making it give a

complete turn around S1 and thus an iterate of γ′ will intersect B(x, ε).

Notice that considering xn = gn1 (b) we have that βn = β(xn−1) ◦ . . . β(x0)

has rotation number ρ2 as the distance between βn and gn2 grows sublinearly (c.f.

Lemma 4.1). On the other hand, if we consider Rθ the rotation of angle θ ∈ (0, δ),

the map

βnθ = Rθ ◦ β(xn−1) ◦Rθ ◦ βxn−2 ◦ . . . ◦Rθ ◦ β(x0)

approaches sublinearly with n going to infinity to (Rθ ◦ g2)n which has rotation

number larger than ρ2. This implies that there exists n0 such that for n > n0 we

have that if β̃θ and β̃ denote the lifts of βθ and β to R one has

|β̃nθ (t)− β̃n(t)| > 1

So, if we consider kn > n0 and we choose β′ such that:

- It coincides with β in the g1-orbit of a.

- It coincides with Rθ ◦ β in the points {b, g1(b), . . . , gkn
1 (b)}.

- Is at distance smaller than δ from β.

We have that fkn

β′ (γ′) ∩B(x, ε) 6= ∅ as desired.

♦

�

References

[BCJL] F.Beguin, S.Crovisier, T.Jager and F.Le Roux, Denjoy constructions for fibred home-
omorphisms of the torus, Trans. Amer. Math. Soc. 361 11 (2009) 5851-5883.

[BCL] F. Beguin, S.Crovisier and F. Le Roux, Construction of curious minimal uniquely ergodic
homeomorphisms on manifolds: the Denjoy-Rees technique. Ann. Sci. ENS. 40 (2007), 251-
308.

[F] B. Fayad. Weak mixing for reparameterized linear flows on the torus. Ergodic Theory Dyn.
Syst., 22 1 (2002), 187–201.



RECURRENCE OF NON-RESONANT HOMEOMORPHISMS ON THE TORUS 11

[J1] T. Jager, Linearisation of conservative toral homeomorphisms, Inventiones Math. 176(3)
(2009), 601-616.

[J2] T. Jager, The concept of bounded mean motion for toral homeomorphisms, Dynamical
Systems. An International Journal 243 (2009), 277-297.

[K1] F. Kwakkel, Minimal sets of non-resonant torus homeomorphisms, Fund. Math. 211
(2011), 41-76.

[K2] J. Kwapisz. Combinatorics of torus diffeomorphisms. Ergodic Theory Dynam. Systems 23
(2003), 559-586.

[L] P. Le Calvez, . Ensembles invariants non enlaces des diffeomorphismes du tore et de l’anneau.
Invent. Math. 155 (2004), 561-603.

[MZ] M. Misiurewicz and K. Ziemian. Rotation sets for maps of tori. J. Lond. Math. Soc.,
40(1989) 490–506.

[M] E. Moise, Geometric topology in dimensions 2 and 3, Graduate texts in Mathematics 47
Springer (1977).

[R] J.H. Roberts, Collections filling a plane, Duke Math J. 2 n1 (1939) pp. 10-19.

CMAT, Facultad de Ciencias, Universidad de la República, Uruguay

Current address: LAGA; Institute Galilee, Universite Paris 13, Villetaneuse, France

E-mail address: rpotrie@cmat.edu.uy


