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Abstract. We present new examples of generic diffeomorphisms without attractors. Also,
we study how these wild classes are accumulated by infinitely many other classes (obtaining
that the chain recurrence classes different from the only quasi-attractor are contained in center
stable manifolds). The construction relies on some derived from Anosov (DA) constructions
and uses strongly the semiconjugacy obtained by these diffeomorphisms. An interesting
feature of this examples is that we can show that robustly, they present a unique attractor
in the sense of Milnor.

1. Introduction

In 1987, A. Araujo in his thesis ([A]) announced that C1-generic diffeomorphisms of com-

pact surfaces have hyperbolic attractors. In fact, he claimed to have proved that for a residual

subset of diffeomorphisms on a compact surface, either there are infinitely many sinks (hy-

perbolic attractors) or there are finitely many hyperbolic attractors whose basin cover a full

Lebesgue measure of the manifold. The proof seems to have a gap, but the techniques in

[PS] allow to overcome them (and with the recent results of C1 generic dynamics this can be

proven rather easily).

In contrast, an astonishing example was recently constructed by [BLY] where they showed

that there exist open sets of diffeomorphisms in any manifold of dimension ≥ 3 such that

every C1-generic diffeomorphism of those open subsets have no attractors (this implies that

generic diffeomorphisms do not have, in general, attractors). Their construction relies on

some modification of the well known solenoid attractor. Although the construction is rather

simple, it is not well understood how is that other classes approach the quasi attractor they

construct. This made C. Bonatti ask whether the infinitely many other chain recurrence

classes approaching the quasi attractor should be contained in the center stable manifolds of

periodic orbits (see [B]).

In this paper we propose a new kind of example starting from a non hyperbolic DA attractor

(based on an example of [Car]) which does not generate examples in every manifold, but

instead, by using the properties of semiconjugacy with a linear Anosov diffeomorphisms,

allow us to give a more satisfactory picture of how the quasi attractor is accumulated by the

other chain recurrence classes.

Our results may be summarized as follows:

Main Theorem. There exists an open set U of Diff1(T3) such that for every g ∈ U there

exists only one quasi-attractor Λg for g. There exists a g−invariant foliation F csg such that
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every chain recurrence class Γ 6= Λg is contained in the orbit of a periodic disc in a leaf of the

foliation. Also, for any r ≥ 1, there exists a Cr-residual subset R ⊂ U ∩ Diffr(T3) (r ≥ 1)

such that for every g ∈ R, g does not have any attractors and there are infinitely many chain

recurrence classes.

In fact we also show that for every g ∈ U there exists a subset K̃ of Λg which is an attractor

in the sense of Milnor. For a definition of attractor in the sense of Milnor, see section 5 (see

also [M] for the original reference). Roughly, it states that the quasi-attractor has a basin

of positive Lebesgue measure, and every compact invariant subset has a basin with strictly

smaller measure. The first statement follows rather easily from the fact that every other

chain recurrence class is contained in a periodic two-dimensional disc. This is done in section

5 where we also show stronger statements for C1-generic diffeomorphisms in U as well as for

general C2 diffeomorphisms there.

We remark that our constructions may be generalized to some extent to perturbations of

transitive Anosov diffeomorphisms in other manifolds of larger dimension (they must have

two dimensional stable bundle at least, otherwise, the bifurcation gives a standard derived

from Anosov hyperbolic attractor).

To our knowledge, the techniques here are not enough to answer the question posed by

Bonatti in the context of the examples given in [BLY].

Finally, we would like to remark that this examples belong to the class studied recently

by Buzzi and Fisher where they prove that the resulting system has a unique measure of

maximal entropy and the system with this measure is measurably isomorphic to the initial

Anosov diffeomorphism ([BF], or [BFSV] for a previous related result).

1.1. Some questions related with the example. In the last few years there has been a

lot of work devoted to the study of C1-generic dynamics. See for example [C2], or [BDV]

chapter 10. Although there have been many groundbreaking results which have clarified a lot

the situation, many very basic questions remain wide open.

Maybe the most surprising of all is the question of whether C1-generic surface diffeomor-

phisms are hyperbolic. This is commonly named as Smale’s conjecture.

In higher dimensions, it is known to be false ([AS]). In fact, Bonatti and Diaz ([BD1]) have

constructed C1-generic diffeomorphisms in every isotopy class of any manifold of dimension

≥ 3 admitting infinitely many chain recurrence classes. Moreover, in [BD2] they construct

examples where the cardinal of the chain recurrence classes for generic diffeomorphisms is

not countable. This raises the very natural question of whether there may exist C1-generic

diffeomorphisms admitting countably many (but infinitely many) chain recurrence classes.

It could be that the examples in this paper represent an example of a diffeomorphism

admitting infinitely many but countably many chain recurrence classes. In fact, if Smale’s

conjecture is true, all the classes for C1-generic diffeomorphisms there should be homoclinic

classes. It is important also to remark that for surface diffeomphisms, in the Newhouse phe-

nomena (which is generic in the C2-topology) there exists diffeomorphisms with uncountably

many chain recurrence classes (see [BDV], chapter 3), so this phenomena must be dense in

the open set of our construction.
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1.2. Organization of the paper. In section 2 we detail the construction of an open set U of

diffeomorphisms of T3 and prove that every g ∈ U admits a unique quasi-attractor. In section

3 we show that there is a residual set of diffeomorphims which do not have any attractors.

Finally, in sections 4, 5 and 6 we prove certain dynamical and ergodic properties of diffeo-

morphisms in U . In particular, in 4 we prove the main property we are interested in: The

chain recurrence classes different from the quasi-attractor are contained in periodic discs. This

property paves the way in order to perform the remarks we shall make in the final sections

of the paper.

Acknowledgements: I would like to thank Sylvain Crovisier for his patience, corrections and

dedication, and, in particular, for suggesting the use of the semiconjugacy with the Anosov

maps to study this kind of examples. Thanks also to C. Bonatti, J. Buzzi, L. Diaz, N.

Gourmelon and M. Sambarino for dedicating some of their time to listen to the construction.

2. Construction of the example

We shall sketch the construction of a modified version of Carvalho’s example (see [Car])

following [BV].

We start with a linear Anosov diffeomorphism A : T3 → T3 admitting a splitting Es ⊕ Eu

where dimEs = 2.

We assume that A has complex eigenvalues on the Es direction so that Es cannot split as

a dominated sum of other two subspaces. For example, the matrix

 1 1 0

0 0 1

1 0 0


which has characteristic polynomial λ3 − λ2 − 1 works since it has only one real root, and it

is larger than one.

Considering an iterate, we may assume that there exists λ < 1/3 satisfying:

‖(DA)/Es‖ < λ ; ‖(DA)−1
/Eu‖ < λ

Let p, q and r be different fixed points of A.

Consider δ small enough and define the following sets V1 = B(p, δ), V2 = B(p, 6δ), W1 =

B(q, δ), W2 = B(q, 6δ) and B = B(r, 6δ). If δ is small enough, we can assume that V2,W2

and B are pairwise disjoint and are at distance larger than 200δ. Also, we can assume that

if π : R3 → T3 is the canonical covering of T3, the distance between different connected

components of the preimages of V2 and W2 is bigger than 200δ.

Let Cu be a family of closed cones around the subspace Eu of A which is preserved by DA

(that is DxA(Cu(x)) ⊂ int(Cu(Ax))). We shall consider the cones are narrow enough so that

any curve tangent to Cu of length bigger than L intersects any stable disc of radius δ. Let Ccs

be a family of closed cones around Es preserved by DA.

From now on, δ remains fixed.
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We shall modify A inside V1 ∪W1 such that we get a new diffeomorphism f : T3 → T3

which lies at C0 distance from A smaller than ν/2� δ and such that it verifies the following

properties:

(a) The point p is a hyperbolic repelling fixed point for f (a source).

(b) The point q is a hyperbolic saddle fixed point of stable index 1 and such that the

product of its two eigenvalues with smaller modulus is larger than 1. We also assume

that the length of the stable manifold of q is larger than δ.

(c) Dxf(Cu(x)) ⊂ int(Cu(f(x))). Also, for every w ∈ Cu(x)\{0} we have ‖Df−1
x w‖ <

λ‖w‖. In fact, we shall also assume that f preserves the stable foliation of A only that

it will not be stable but center stable for f .

(d) For every x /∈ V1 ∪W1 we have that if v ∈ Ccs(x)\{0} then ‖Dxfv‖ < λ‖v‖. This is

satisfied for f since f = A outside V1∪W1. Also1, we can demand that for some small

β > 0 we have that ‖Dxfv‖ < (1 + β)‖v‖ for every v ∈ Ccs(x)\{0} and every x.

This construction can be made using classical methods (see [BV])2. Notice that we do not

ask for volume contraction in the Ccs cone field although we do ask for strict contraction

outside a neighborhood.

Properties (a), (b) and (d) are C1 robust, so every g in a C1 neighborhood U1 of f will

satisfy them.

The same happens with the first assertion of (c). The second statement is not robust, but if

we use the theory of normal hyperbolicity of [HPS] (chapter 7), recalling that stable foliation

of A is C1 we get that g will preserve a center stable foliation whose leaves will be C1 near

the original ones. This new foliation will be tangent to Ecs
g , a bidimensional bundle which

will be Dg-invariant and contained in Ccs. Also, we can assume that every curve of length L

tangent to Cu will intersect any disc of radius 2δ in the center stable foliation of g. All this

will happen for every g ∈ U2, a C1 neighborhood of f .

Given ε > 0, we can choose ν sufficiently small such that every diffeomorphism g, ν − C0-

close to A is semiconjugated to A with a with a continuous surjection hg which will be

ε − C0−near the identity satisfying hg ◦ g = A ◦ hg (this is a classical result on topological

stability of Anosov diffeomorphisms, see [W]).

We consider a C1-neighborhood U ⊂ U1 ∩ U2 of f such that every g ∈ U is ν − C0-close to

A.

We shall close this section by proving that for these examples there exists a unique quasi-

attractor for the dynamics. Recall that a quasi-attractor Λ is a chain recurrence class(3)

which admits a decreasing sequence of open neighborhoods {Un} such that Λ =
⋂
n Un and

g(Un) ⊂ Un.

1This condition is important only to verify the hypothesis of Buzzi and Fisher’s result [BF] and for the
considerations for C2 diffeomorphisms in section 5

2The fact that the arbitrarily narrow cone can be preserved is proved in the last paragraph of page 189 in
[BV]

3The chain recurrent set is the set of points x satisfying that for every ε > 0 there exist an ε-pseudo orbit
form x to x, that is, there exist points x = x0, x1, . . . xk = x with k ≥ 1 such that d(f(xi), xi+1) < ε. Inside
the chain recurrent set, the chain recurrence classes are the equivalence classes of the relation given by x à y
when for every ε > 0 there exists an ε−pseudo orbit from x to y and one from y to x (see [BDV] chapter 10).
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Lemma 1. For every g ∈ U there exists an unique quasi-attractor Λg. This quasi attractor

contains the homoclinic class of rg, the continuation of r.

Proof. We use the same argument as in [BLY].

There is a center stable disc of radius bigger than 2δ contained in the stable manifold of rg
by construction. So, every unstable manifold of length bigger than L will intersect the stable

manifold of rg.

Let Λ be a quasi attractor, so, there exists a sequence Un, of neighborhoods of Λ such that

g(Un) ⊂ Un and Λ =
⋃
n Un. Since Un is open, there is a small unstable curve γ contained

in Un. Since Dg expands vectors in Cu we have that the length of gk(γ) tends to +∞ as

n → +∞. So, there exists k0 such that gk0(γ) ∩W s(rg) 6= ∅. So, since g(Un) ⊂ Un we get

that Un ∩W s(rg) 6= ∅, using again the forward invariance of Un we get that rg ∈ Un.

This holds for every n so rg ∈ Λ. Since the homoclinic class of rg is chain transitive, we

also get that H(rg, g) ⊂ Λ. And since for every homeomorphism of a compact metric space

there is at least one chain recurrent class which is a quasi attractor we conclude the proof.

�

3. Some properties of the perturbations of f and generic non existence of

attractors

Let As and Au be, respectively, the stable and unstable foliations of A, which are linear

foliations. Since A is a linear Anosov diffeomorphism, the distances inside the leaves of the

foliations and the distances in the manifold are equal in small neighborhoods of the points if

we choose a convenient metric.

Let Asη(x) denote the ball of radius η around x inside the leaf of x of As. For any η > 0,

it is satisfied that A(Asη(x)) ⊂ Asη/3(Ax) (an analogous property is satisfied by Auη(x) and

backward iterates).

Let F csg be the invariant foliation tangent to the Dg invariant bundle Ecs. We denote by

W cs
loc(x) the disc of radius 2δ inside the leaf of this foliation and centered at x. Since g is

C1-near A, the foliation F csg is near the stable foliation of A.

The distance inside the leaves of F csg are similar to the ones in the ambient manifold. That

is, there exists β ≈ 1 such that if x, y belong to a connected component of F csg (z)∩B(z, 10δ)

then β−1dcs(x, y) < d(x, y) < βdcs(x, y) where F csg (z) denotes the leaf of the foliation passing

through z.

Also, we can assume that for some γ < min{‖A‖−1, ‖A−1‖−1, δ/10}, W cs
loc(x) is contained

in a γ/2 neighborhood of W s
2δ(x,A), the disc of radius 2δ of the stable foliation of A around

x.

Lemma 2. We have that g(W cs
loc(x)) ⊂ W cs

loc(g(x)).

Proof. Consider around each x ∈ T3 a continuous map bx : D2 × [−1, 1] → T3 such that

bx({0} × [−1, 1]) = Au3δ(x) and bx(D2 × {t}) = As3δ(bx({0} × {t})). For example, one can

choose bx to be affine in each coordinate to the covering of T3.

Thus, it is not hard to see that one can assume also that bx(
1
3
D2×{t}) = Asδ(bx({0}×{t}))

and that bx({y} × [−1/3, 1/3]) = Auδ (bx({y} × {0})). Let Bx = bx(D2 × [−γ/2, γ/2]).
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We have that A(Bx) is contained in bAx(
1
3
D2 × [−1/2, 1/2]). Since g is ν −C0−near A, we

get that g(Bx) ⊂ bg(x)(
1
2
D2 × [−1, 1]).

Let π1 : D2 × [−1, 1] → D2 such that π1(x, t) = x. We have that π1(b
−1
g(x)(W

cs
loc(g(x))))

contains 1
2
D2 from how we chose γ and from how we have defined the local center stable

manifolds (4).

Since g(F csg (x)) ⊂ F csg (g(x)) and g(W cs
loc(x)) ⊂ bg(x)(

1
2
D2 × [−1, 1]) we get the desired

property.

�

The fact that g ∈ U is semiconjugated with A together with the fact that the semiconjugacy

is ε−C0 close to the identity gives us the following easy properties about the fibers (preimages

under hg) of the points.

We denote Πuu
x,z : U ⊂ W cs

loc(x) → W cs
loc(z) the unstable holonomy where z ∈ W uu(x) and

U is a neighborhood of x in W cs
loc(x) which can be considered large if z is close to x in W uu.

In particular, let γ > 0 be such that if z ∈ W uu
γ (x) then the holonomy is defined in a

neighborhood of radius ε of x.

Proposition 1. (1) h−1
g ({y}) is a compact connected set contained in W cs

loc(x) for every

x ∈ h−1
g ({y}).

(2) Let x ∈ h−1
g ({y}) and z ∈ W u

γ (x). Then, hg(Π
uu
x,z(h

−1
g ({y}))) is exactly one point.

Proof. (1) Since hg is ε−C0-close the identity, we get that for every point y ∈ T3, h−1
g ({y})

has diameter smaller than ε. Since ε is small compared to δ, it is enough to prove that

h−1
g ({y}) ⊂ W cs

loc(x) for some x ∈ h−1
g ({y}).

Assume that for some y ∈ T3, h−1
g ({y}) intersects two different center stable leaves of F cs

in points x1 and x2.

Since the points are near, we have that W uu
γ (x1) ∩ W cs

loc(x2) = {z}. Thus, by forward

iteration, we get that for some n0 > 0 we have d(gn0(x1), g
n0(z)) > 3δ.

Lemma 2 gives us that d(gn0(x2), g
n0(z)) < 2δ and so, we get that d(gn0(x1), g

n0(x2)) > δ

which is a contradiction since {gn0(x1), g
n0(x2)} ⊂ h−1

g ({An0(y)}) which has diameter smaller

than ε� δ.

Also, since the dynamics is trapped in center stable manifolds, we get that the fibers must

be connected since one can write them as
⋂
n≥0 g

n(W cs
loc(g

−n(x))).

(2) Since g−n(h−1
g ({y})) = h−1

g ({A−n(y)}) we get that diam(g−n(h−1
g ({y}))) < ε for every

n > 0.

This implies that there exists n0 such that if n > n0 then g−n(Πuu
x,z(h

−1
g ({y}))) is sufficiently

near g−n(h−1
g ({y})). So, we have that diam(g−n(Πuu

x,z(h
−1
g ({y})))) < 2ε� δ.

Assume that hg(Π
uu
x,z(h

−1
g ({y}))) contains more than one point. These points must differ

in the stable coordinate of A, so, after backwards iteration we get that they are at distance

bigger than 3δ. Since hg is ε− C0-close the identity this represents a contradiction.

�

4In fact, b−1
g(x)(W

cs
loc(g(x))) ∩ 1

2D2 × [−1, 1] is the graph of a C1 function from 1
2D2 to [−γ/2, γ/2] if bx is

well chosen.
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Remark 1. The second statement of the previous proposition gives that the fibers of hg are

invariant under unstable holonomy.

♦

The following simple lemma will be useful for proving the desired properties.

Given a subset K ⊂ F cs(x) we define its center stable diameter as the diameter with the

leaf metric induced by the metric in the manifold.

Lemma 3. For every g ∈ U , given an arc connected set C in W cs
loc(x, g) whose image by hg

has at least two points, there exists n0 > 0 such that g−n0(C) has center stable diameter bigger

than 100δ.

Proof. Since C is arc connected so is hg(C), so, it is enough to suppose that diam(C) < δ.

We shall first prove that hg(C) is contained in a stable leaf of the stable foliation of A.

Otherwise, there would exist points in hg(C) whose future iterates separate more than 2δ,

this contradicts that the center stable plaques are trapped for g (Lemma 2).

One now has that, since A is Anosov and that hg(C) is a connected compact set with more

than two points contained in a stable leaf of the stable foliation, there exists n0 > 0 such that

A−n0(hg(C)) has stable diameter bigger than 200δ. Now, since hg is close to the identity, one

gets the desired property.

�

Using this lemma, we shall prove that generic diffeomorphisms in U do not have any at-

tractor. For this, we shall prove that the saddle point qg is contained in the quasi-attractor

Λg.

Lemma 4. For every g ∈ U , qg ∈ Λg.

Proof. We have proved in Lemma 1 that the homoclinic class of rg is contained in the unique

quasi-attractor for every g ∈ U so, it will be enough to prove that the unstable manifold of

rg intersects every neighborhood of qg.

Consider U , a neighborhood of qg, and D a center stable disc contained in U .

Since the stable manifold of qg has length bigger than δ > ε, after backward iteration of

D one gets that hg(g
−k(D)) will have at least two points. Using Lemma 3 we get that there

exists n0, such that g−n0(D) has diameter larger than 100δ.

Claim 1: If there exists n0 such that g−n0(D) has diameter larger than 100δ, then D intersects

W uu(rg).

Proof of the claim. This is proved in detail in section 6.1 of [BV] so we shall only sketch

it.

If g−n0(D) has diameter larger than 100δ, from how we choose V2 and W2 we have that

there is a compact connected subset of g−n0(D) of diameter larger than 35δ which is outside

V2 ∪W2.

So, g−n0−1(D) will have diameter larger than 100δ and the same will happen again. This

allows to find a point x ∈ D such that ∀n > n0 we have that g−n(x) /∈ V2 ∪W2.
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Now, considering a small disc around x we have that by backward iterates it will contain

discs of radius each time bigger and this will continue while the disc does not intersect V1∪W1.

If that happens, since g−n(x) /∈ V2 ∪W2 the disc must have radius at least 3δ.

This proves that there exists m such that g−m(D) contains a center stable disc of radius

bigger than 2δ, so, the unstable manifold of rg intersects it. Since the unstable manifold of

rg is invariant, we deduce that it intersects D and this concludes the proof.

�

Since U is arbitrary, we get that qg ∈ W uu(rg) ⊂ Λg and so qg ∈ Λg.

�

In [BLY] they construct diffeomorphisms without attractors for Cr generic diffeomorphisms

in some open set (r ≥ 1). They rely on the existence of robust homoclinic tangencies and

a result from [PV] which guaranties, for sectionally dissipative tangencies, the creation of

infinitely many sinks (they use the result for f−1). We shall separate the C1 case from the

general Cr case as they do, since the proofs are essentially different (in the C1 case it relies in

Franks Lemma which is specifically C1 and the other relies on robust intersections of cantor

sets which is specifically from arguments Cr, r ≥ 2).

Also, the obtained result for r = 1 is stronger since one proves that the quasi-attractor is

contained in the closure of the sources of g, for C1-generic g.

For r > 1, we work with U r = U∩Diffr(T3) which is an open set of Diffr(T3). However we are

not able to prove that there is a residual subset of U r of diffeomorphisms without attractors.

Instead, we use a recent result of [BD3] to construct a C1-open and dense subset U1 of U
such that if U r1 = U1 ∩ Diffr(T3), then there is a Cr-residual subset of U r1 of diffeomorphisms

without attractors. Notice that U r1 may not be dense in U r, but we know that it is open.

Theorem 1. There exists a C1-residual subset R ⊂ U , such that every g ∈ R satisfies that

the only quasi-attractor is contained in the closure of infinitely many sources. In particular,

Λg is not an attractor for any g ∈ R.

Proof. We have that there exists R1 ⊂ U , a C1-residual set such that for every g ∈ R1,

the quasi-attractor Λg coincides with the homoclinic class of qg (see [BC]). The fact that Λg

contains rg which has complex eigenvalues in the Ecs direction implies that this subbundle

admits no sub-dominated splitting.

Since the product of the eigenvalues of Dqgg/Ecs is bigger than one, the results in [BDP]

imply that there exist a C1-residual set R2 ⊂ R1 such that every g ∈ R2 verifies that the

homoclinic class of qg (and thus Λg) is contained in the closure of the set of sources of g.

�

Theorem 2. There exists a C1 open and dense subset U1 of U such that, for every r ≥ 1,

there exists a Cr-residual R ⊂ U1 ∩Diffr(T3) verifying that Λg is not an attractor.

Proof . Since Ecs admits no subdominated splitting in Λg and qg has index one and is

contained in Λg, Theorem 1.1 of [BD3] guaranties that for C1-generic diffeomorphisms in U ,

the homoclinic class of qg admits a hyperbolic set containing qg and presenting C1-robust

homoclinic tangencies. Name U1 to the C1-open dense set given by this Theorem.
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By a Cr-small perturbation we may create a tangency of qg. Using the main theorem of

[PV] (notice that qg is sectionally disipative for f−1) we get that we can create infinitely many

sources accumulating Λg. Since this phenomena is Gδ, we get that for Cr-generic (r ≥ 2)

g ∈ U1, the quasi-attractor Λg is not an attractor. See [BLY], section 3.7 for more details.

�

Remark 2. We used that A had complex eigenvalues in the Es direction to show that Ecs

admits no subdominated splitting. If we had consider any linear Anosov diffeomorphism,

we could have made a C0-small perturbation to impose that rg (for example) had complex

eigenvalues and there would have been no changes in the construction.

♦

4. Localization of chain recurrence classes

In this section we obtain the main result of this paper.

We shall prove that the chain recurrence classes which are not the quasi-attractor are

contained in periodic local center stable leaves and have small diameter. This holds for every

g ∈ U .

First, we shall apply Lemma 3 to prove that the frontier (relative to the center stable

manifold) of the fibers of hg is contained in the quasi-attractor.

Lemma 5. For every g ∈ U , let x ∈ ∂h−1
g ({y}) (relative to the local center stable manifold

of h−1
g ({y}) ), then, x belongs to the unique quasi-attractor of g.

Proof. It is enough to prove that every neighborhood of x intersects the quasi-attractor.

For that, let D be an arbitrary center stable disc around x. Since x ∈ ∂h−1
g ({y}) so, hg(D)

has at least two points, Lemma 3 gives that there is an iterate g−n0(D) has diameter bigger

than 100δ.

After that, the argument from [BV] sketched in Claim 1 allows to conclude as in Lemma 4.

�

Remark 3. A direct consequence of this lemma is that hg(Λg) = T3. This could have been

deduced earlier without using this tools. In fact, since quasi attractors are saturated by

unstable sets, it is easy to see that every quasi attractor of a diffeomorphism in U projects to

the whole T3 with the semiconjugacy (using for example Proposition 1).

♦

Now we have that if there is another chain recurrence class of g, it intersects the fibres of

hg the relative interior restricted to the center stable manifold. This will allow us to prove:

Theorem 3. For every g ∈ U , every chain recurrence class of g different from Λg is contained

in the relative interior (with respect to the center stable manifold) of h−1
g (O) where O is a

periodic orbit of A.

Proof. Let Γ 6= Λg be a chain recurrence class of g. Lemma 5 states that Γ∩int(h−1
g ({y})) 6=

∅ for some y ∈ T3.
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Conley’s theory (see [R] chapter 10) gives us an open neighborhood U of Γ whose closure

is disjoint with Λg and such that every two points x, z ∈ Γ are joined by arbitrarily small

pseudo-orbits contained in U .

Since U does not intersect Λg, from Lemma 5 (and using the invariance under unstable

holonomy of the fibers) we get that there exists η′ such that if d(x, z) < η′ and x ∈ U , then

hg(x) and hg(z) lie in the same local unstable manifold (it suffices to choose η′ < d(U,Λg)).

Given ζ > 0 we choose, by continuity of hg, η > 0 such that d(x, z) < η implies d(hg(x), hg(z)) <

ζ. The semiconjugacy implies then that if z0, . . . zn is a η−pseudo orbit for g, then hg(z0), . . . , hg(zn)

is a ζ-pseudo orbit for A (that is, d(A(hg(zi)), hg(zi+1)) < ζ). Also, if η < η′ and z0, . . . zn is

contained in U , then we get that the the pseudo-orbit hg(z0), . . . , hg(zn) has jumps inside the

unstable manifolds (i.e. hg(zi+1) ∈ W u
ζ (A(hg(zi)))).

Take x ∈ Γ. Then, for every η < η′ we take x = z0, z1, . . . , zn = x (n ≥ 1) a η−pseudo

orbit contained in U joining x to itself. Thus, we have that An(W u(hg(x))) = W u(hg(x)) so,

W u(hg(x)) is the unstable manifold for A of a periodic orbit O. Since Γ is g-invariant and

since the semiconjugacy implies that g−n(x) accumulates on h−1
g (O), we get that Γ intersects

the fiber h−1
g (O).

We must now prove that Γ ⊂ h−1
g (O).

It is not difficult to prove that given ε > 0 there exists δ > such that if z0, . . . zn is a

δ−pseudo orbit for A with jumps in the unstable manifold, then zn ∈ W u
ε (O) implies that

z0 ∈ O (notice that a pseudo orbit with jumps in the unstable manifold of a periodic orbits

can be regarded as a pseudo orbit for a homothety in R).

Assume that there is a point z ∈ Γ such that hg(z) ∈ W u(O)\O. So, there are arbitrarily

small pseudo orbits contained in U joining z with a point in h−1
g (O). This implies that after

sending the pseudo orbit by hg we would get arbitrarily small pseudo orbits for A, with jumps

in the unstable manifold, joining hg(z) with O. This contradicts the remark made in the last

paragraph.

So, we get that Γ is contained in h−1
g (O) where O is a periodic orbit of A.

�

5. Attractors in the sense of Milnor and SRB measures

In this section we make some remarks on the properties of the quasi-attractor Λg from

the point of view of [M] and [BV]. Since the properties are quite straightforward from those

papers, and introducing all the concepts would be rather long, we chose to assume certain fa-

miliarity with SRB measures (see [BDV] section 11.2 for a nice introduction on SRB measures

in this exact context).

We shall say that a compact invariant chain recurrent set Λ is an attractor in the sense of

Milnor iff the basin B(Λ) of Λ has positive Lebesgue measure and for every Λ̃ ( Λ compact

invariant set, its basin B(Λ̃) has strictly smaller measure. If, moreover, for every Λ̃ ( Λ

compact invariant set, we have that Leb(B(Λ̃)) = 0, we will say that Λ is a minimal attractor

in the sense of Milnor.

Here, basin must be understood as the set of points whose forward iterates converge to the

compact set (it must not be confused with the statistical basin which is quite more restrictive).
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5.1. Existence of an unique attractor in the sense of Milnor. We shall show in this

section that for every g ∈ U , the open set we have constructed, the only quasi-attractor Λg,

contains an attractor in the sense of Milnor.

We first claim that every point which does not belong to the fiber of a periodic orbit belongs

to the basin of Λg: Since there are only countably many periodic orbits and their fibers are

contained in two dimensional discs (which have zero Lebesgue measure) this implies directly

that the basin of Λg has total Lebesgue measure.

To prove this, consider a point x whose omega-limit set ω(x) is contained in a chain recur-

rence class Γ different from Λg. Then, since this chain recurrence class is contained in the

fiber h−1
g (O) of a periodic orbit O of A, which in turn is contained in the local center stable

manifold of some point z ∈ T3. This implies that some forward iterate of x is contained in

W cs
loc(z). The fact that the dynamics in W cs

loc is trapping (see Lemma 2) and the fact that

∂h−1
g (O) ⊂ Λg (see Lemma 5) gives that x itself is contained in h−1

g (O) as claimed.

Now, Lemma 1 of [M] implies that Λg contains an attractor in the sense of Milnor.

We have proved:

Proposition 2. For every g ∈ U , the only quasi-attractor Λg of g contains an attractor in

the sense of Milnor. Moreover, its basin has total Lebesgue measure.

5.2. SRB measures and minimal attractors for smooth and C1-generic diffeomor-

phisms in U . The following result follows quite straightforwardly from [BV]:

Proposition 3. If g ∈ U is of class C2, then g admits a unique SRB measure whose support

coincides with W uu(rg) = H(rg). In particular, W uu(rg) is a minimal attractor in the sense

of Milnor for g.

We shall briefly explain how it can be deduced from their work.

In the case g ∈ U is of class C2, we shall show that the hypothesis of Theorem A of [BV] are

satisfied (see also Theorem 11.25 in [BDV]), and thus, we get that there are at most finitely

many SRB measures (see [BV] for a definition) such that the union of their (statistical) basins

has full Lebesgue measure in the topological basin.

Proposition 4. For every x ∈ T3 and D ⊂ W uu
loc an unstable arc, we have full measure set

of points which have negative Lyapunov exponents in the direction Ecs.

Proof. The proof is exactly the same as the one in Proposition 6.5 of [BV] so we omit it.

Notice that conditions (c) and (d) in our construction imply conditions (i) and (ii) in section

6.3 of [BV].

�

The set Λg does not verify the hypothesis of Theorem B of [BV] since we do not have

minimality of the unstable foliation. However, the fact that the stable manifold of rg is big,

gives that every unstable manifold intersects W s(rg) and so we get that every minimal set of
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the unstable foliation must coincide with W uu(rg). It is not hard to see how the proof of [BV]

works in this context5. We get thus that g admits an unique SRB measure.

We claim that W uu(rg) = H(rg): this follows from the fact that the SRB measure is

hyperbolic (by Proposition 4) and the dominated splitting (see Proposition 1.4 of [C1]).

To finish the proof of Proposition 3, we use the fact that since the SRB measure has total

support and almost every point converges to the whole support, we get that the attractor is

in fact a minimal attractor in the sense of Milnor. This concludes the proof of Proposition 3.

The importance of considering g of class C2 comes from the fact that with lower regularity,

even if we knew that almost every point in the unstable manifold of rg has stable manifolds,

we cannot assure that these cover a positive measure set due to the lack of absolute continuity

in the center stable foliation.

However, the information we gathered for smooth systems in U allows us to extend the

result for C1-generic diffeomorphisms in U . Recall that for a C1-generic diffeomorphisms

g ∈ U , the homoclinic class of rg coincides with Λg.

Theorem 4. There exists a C1-residual subset R ⊂ U such that for every g ∈ R the set

Λg = H(rg) is a minimal attractor in the sense of Milnor.

Proof. It sufficies to show that the set of diffeomorphisms in U for which W uu(rg) is a

minimal attractor in the sense of Milnor is a Gδ set (countable intersection of open sets) since

we have already shown that C2 diffeomorphisms (which are dense) verify this property.

Notice that since rg has a well defined continuation in U , it makes sense to consider the

map g 7→ W uu(rg) which is naturally semicontinuous with respect to the Haussdorff topology.

Given an open set U , we define U+(g) =
⋂
n≤0 g

n(U).

Let us define the set OU(ε) as the set of g ∈ U such that they satisfy one of the following

(disjoint) conditions

- W uu(rg) is contained in U or

- W uu(rg) ∩ U
c 6= ∅ and Leb(U+(g)) < ε

We must show that this sets are open (it is not hard to show that if we consider an

countable basis of the topology and {Un} are finite unions of open sets in the basis then

R =
⋂
n,mOUn(1/m)).

To prove that these sets are open, we only have to prove the semicontinuity of the measure

of U+(g). Let us consider the set K̃ = U\U+(g), so, we can write K̃ as an increasing union

K̃ =
⋃
n≥1Kn where Kn is the set of points which leave U in less than n iterates.

So, if Leb(U+(g)) < ε, we can choose n0 such that Leb(U\Kn0) < ε. It is easy to see

that for a small neighborhood N of g, we have that if f ∈ N , then Kn0 ⊂ U\U+(f). This

concludes.

�

5See the first paragraph of section 5 in [BV]. Our Proposition 4 implies that (H3) is verified. Moreover,
every unstable disc converges after future iteration to the whole Wuu(rg), so, since the unstable foliation is
minimal in Wuu(rg) we get that there is only one accesibility class there as needed for their Theorem B.
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6. Dynamics inside the fibers

We conclude by proving some easy facts about the dynamics inside the fibers which contain

the eventual chain recurrence classes different from the quasi-attractor. This study will be

made from the C1-generic viewpoint. We have proved that in this context, there are infinitely

many such classes and are contained in the fibers of periodic orbits of A (that is, h−1
g (O)

where O is a periodic orbit for A).

Proposition 5. There exists a C1-residual subset R ⊂ U such that if g ∈ R then:

(1) Λg =
⋃
x∈T3 ∂h−1

g ({x}) where the frontier is relative to the center stable manifolds.

(2) Let O be a periodic orbit such that h−1
g (O) has non empty interior relative to the

center stable manifold. Then, g has a chain recurrence class contained in the interior

of h−1
g (O) relative to the center stable manifold which is different from Λg.

Proof. (1) Since g is generic, we have that W uu(rg) is dense in Λg. So, since fibers are

invariant under unstable holonomy, we get that points in the interior of the fibers relative to

the center stable manifold cannot be approached by W uu(rg) proving Λg ⊂
⋃
x∈T3 ∂hg({x}).

The other inclusion is Lemma 5.

(2) Since Λg is a quasi-attractor, there exist a neighborhood U such that g(U) ⊂ U and

U ∩h−1
g (O) 6= h−1

g (O), this implies, since h−1
g (O) is invariant, that there is a chain recurrence

class there.

�
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