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Abstract

Each of two players, by turns, rolls a dice several times accumulating the
successive scores until he decides to stop, or he rolls an ace. When stopping, the
accumulated turn score is added to the player account and the dice is given to
his opponent. If he rolls an ace, the dice is given to the opponent without adding
any point. In this paper we formulate this game in the framework of competitive
Markov decision processes (also known as stochastic games), show that the game
has a value, provide an algorithm to compute the optimal minimax strategy, and
present results of this algorithm in three different variants of the game.

Keywords: Competitive Markov processes, Stochastic games, dice games, mini-
max strategy.
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1 Introduction

Consider a two-players dice game in which players accumulate points by turns with
the following rules. The player who reaches a certain fixed number of points is the
winner of the game. In his turn each player rolls the dice several times until deciding
to stop or rolling an ace. If he decides to stop the accumulated successive scores are
added to his account; while if he rolls an ace no additional points are obtained. As a
first approach to find optimal strategies for this game Roters [5] studied the optimal
stopping problem corresponding to the maximisation of the expected score in one
turn. The optimal solution is a good way of minimising the number of turns required
to reach the objective.

Later, Roters & Haigh [3] found the strategy that minimises the expected number
of turns required to reach the target. This second strategy is better than the one
obtained in [5] but none of them take into account the consideration of the number
of points of the opponent, that is clearly relevant in order to win the game.
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In this paper we formulate this game in the framework of competitive Markov
decision processes (also known as stochastic games), show that the game has a value,
provide an algorithm to compute the optimal minimax strategy, and present results
of this algorithm in three different variants of the game.

The concept of “stochastic games” was introduced in 1953 by Shapley in [6]. In
the recent book by Filar and Vrieze [2], the authors provide a general and modern
comprehensive approach to this theory departing from the theory of controlled Markov
processes (that can be considered “solitaire” stochastic games) and call the type of
games we are interested in competitive Markov decision processes, a denomination
that we find more accurate than the more usual denomination stochastic game.

During the preparation of this paper we found the related article by Neller and
Presser [4] where the authors, following an heuristic approach, formulate the Bellman
equation of the problem (that is a consequence of our results), and compute the
optimal strategy of a variant of this game. It must be noted that the theory of Filar
and Vrieze [2], that we follow, provide the solution of the problem in the set of all
possible strategies, including non-stationary and randomised strategies, i.e. the set
of behaviour strategies.

In section 2 we present the theory of competitive Markov decision processes, spe-
cially in the transient case and we conclude the section with the formulation of the
theorem we need to solve our dice game. A proof of this theorem can essentially be
found in [2]. In section 3 we determine the state space of our game, the corresponding
action spaces for each player, the payoff function of the game, and the Markov tran-
sitions depending on each state of the process and action of the players. In section
4 we present two related games: first, in order to win, the player has to reach the
target exactly (if the target is exceeded, he gives the dice to his opponent without
changing his accumulated score); in the second variant the players aim to maximise
the difference between their scores. In section 5 we present the conclusions.

2 Competitive Markov decision processes

A competitive Markov decision process (also known as a stochastic game) is the math-
ematical model of a sequential game, in which two players take actions considering
the status of a certain Markov processes. Both actions determine an immediate payoff
for each player and the probability distribution of the following state of the game.
Our interest is centred in two-players, finite-state and finite-action, zero-sum games.
To define them formally we need the following ingredients:

(S) States: A finite set S of the possible states of the game.

(A) Actions: For each state s ∈ S we consider finite sets As and Bs whose elements
are the possible actions for the players; at each step both players take his actions
simultaneously and independently.

(P) Payoffs: For each state s ∈ S a function rs : As × Bs → R determines the
amount that player two has to pay to player one depending on the actions
taken by both players.
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(TP) Transition probabilities: For each (s, a, b) ∈ S×As×Bs, Ps,a,b is a distribution
probability on S, which determines the following state of game.

We denote by St the state of the game at time t = 0, 1, . . .; the initial state is fixed
(S0 = s0). At each step t players choose actions At and Bt in ASt BSt respectively,
which determine that player two has to pay to player one an amount of rSt(At, Bt),
and the distribution probability of St+1 will be PSt,At,Bt .

The random variable W =
∑∞

t=0 r
St(At, Bt) is the total amount that player two

pays to player one (could be negative). Note that W depends on the way in which
players take their actions. The objective of the game for player one is to maximise the
expected value V of the accumulated payoff W , while player two has the objective of
minimising it. In principle V could be infinite. Often for economic applications the
accumulated payoff is Wβ =

∑∞
t=0 β

trSt(At, Bt), called “the discounted sum”, where
0 < β < 1 represent the devaluation of the money. This discount factor β ensures
that W is finite with probability one and the existence of its expected value.

In the case of transient stochastic games, the situation considered in this paper,
the sum defining W is finite a.s. due to the fact that the process always reaches
a final state sf ∈ S in a (not necessarily bounded) finite number of steps. In the
definition of transient stochastic game additional conditions are required, in order to
V to be finite. Before the formal definition of transient stochastic games, the concept
of behaviour strategy is introduced.

2.1 Strategies

Consider the set K defined by

K = {(s, a, b) : s ∈ S, a ∈ As, b ∈ Bs}

We define, for each t = 0, 1, . . ., the sets Ht, of admissible histories up to time t, by

Ht =

 S if t = 0
K× . . .×K︸ ︷︷ ︸

t times

×S else

Definition 1 (Behaviour strategy) Given a stochastic game, a behaviour strat-
egy for player one (two) in the game is a function π which associates to each history

h = (s0, a0, b0, . . . , s) ∈ ∪∞t=0Ht

a distribution probability π(·|h) in As (respectively ϕ(·|h) in Bs). In the context of
a stochastic game, we denote by Π (Φ), the set of all behaviour strategies for player
one (two).

Note that the previous definition is in agreement with the intuitive idea that a
player can choose his action based on the history of the game. There are two relevant
subclasses of strategies, pure and stationary, introduced below.

3



Definition 2 (Pure strategy) A behaviour strategy π is said to be pure, if for each
history h there exists an action ah such as π(ah|h) = 1. We could say that a pure
strategy chooses the action to be taken in a deterministic way.

Definition 3 (Stationary strategy) A behaviour strategy π is said to be station-
ary, if the probability distribution π(·|h) depends only on s, the last state of the history.
In this case we use the notation π(·|s).

2.2 Probabilistic framework

We now construct the probability space in which the optimisation procedure takes
place. Consider the product space

Ω = (S × ∪s∈SAs × ∪s∈SBs)N

equipped with the product σ-algebra F, defined as the minimal σ-algebra containing
the cylinder sets of Ω.

Given ω = (s0, a0, b0, s1, a1, b1, . . .) ∈ Ω, a sequence of states and actions in the
product space, the coordinate processes

{St}t=0,1,..., {At}t=0,1,..., {Bt}t=0,1,...

are defined by
St(ω) = st, At(ω) = at, Bt(ω) = bt.

In this framework, given π, ϕ behaviour strategies for players one and two and an
initial state s ∈ S, it is possible to introduce a probability Ps,π,ϕ, such that, for the
random vector

Ht = (S0, A0, B0, S1, A1, B1, . . . , St),

and the finite sequence of states and actions ht = (s0, a0, b0, . . . , st), the following
assertions hold:

• the game starts in the state s, i.e., Ps,π,ϕ(S0 = s) = 1;

• with probability 1, Ht take their values in Ht;

• the probability distribution on the actions chosen by players at time t depends
on Ht, according to

Ps,π,ϕ(At = at|Ht = ht) = π(at|ht)

Ps,π,ϕ(Bt = bt|Ht = ht) = ϕ(bt|ht)
Ps,π,ϕ(At = at, Bt = bt|Ht = ht) = π(at|ht)ϕ(bt|ht).

• the distribution probability of St+1 depends only on St, At, Bt, being the tran-
sition probabilities (TP) of the game

Ps,π,ϕ(St+1 = st+1|Ht = ht, At = at, Bt = bt) = Pst,at,bt(st+1).

We denote by Es,π,ϕ the expected value in the probability space (Ω,F,Ps,π,ϕ).
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2.3 Transient stochastic games

Definition 4 (Transient stochastic game) A stochastic game is transient when
there exists a final state sf ∈ S such that:

(1) rsf (a, b) = 0, ∀a ∈ Asf , ∀b ∈ Bsf ;

(2) Psf ,a,b(sf ) = 1, ∀a ∈ Asf , ∀b ∈ Bsf ;

(3) for all pair of strategies (π, ϕ) of player one and two respectively and for all
initial state s

∞∑
t=0

Ps,π,ϕ(St 6= sf ) <∞.

Conditions (1) and (2) ensure that, once the game falls into the final state sf , it
never changes the state again and the gain of both players is zero. The third condition
ensures that the game finishes with probability one.

Definition 5 (Value of a pair of strategies) Given π ∈ Π, ϕ ∈ Φ, strategies for
players one and two in a transient stochastic game, the value of the strategies is a
function Vπ,ϕ : S → R defined by

Vπ,ϕ(s) =
∞∑
t=0

Es,π,ϕ(rSt(At, Bt)).

Definition 6 (Optimal strategy) A behaviour strategy π∗ for player one in a tran-
sient stochastic game is said to be optimal if

inf
ϕ∈Φ

Vπ∗,ϕ(s) = sup
π∈Π

inf
ϕ∈Φ

Vπ,ϕ(s), ∀s ∈ S.

Analogously a behaviour strategy ϕ∗ for player two, is said to be optimal if

sup
π∈Π

Vπ,ϕ∗(s) = inf
ϕ∈Φ

sup
π∈Π

Vπ,ϕ(s), ∀s ∈ S.

We now formulate the result used to solve our dice game.

Theorem 2.1 (Value and optimal strategies) Given a transient stochastic game
the following identity is fulfilled

sup
π

inf
ϕ
Vπ,ϕ(s) = inf

ϕ
sup
π
Vπ,ϕ(s), for all s ∈ S. (2.1)

The vector defined in (2.1), denoted by (v(s))s∈S, is called the value of the game.
This value is the unique joint solution of

x(s) =

[
rs(a, b) +

∑
s′∈S

Ps,a,b(s′)x(s′)

]∗
a∈As,b∈Bs

,
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where [·]∗ represents the value of the matrix game (in the minimax sense) obtained by
considering rows a ∈ As and columns b ∈ Bs. Moreover, the stationary strategies π
and ϕ for players one and two, such that π(·|s) and ϕ(·|s) are the optimal strategies
of the matrix game [

rs(a, b) +
∑
s′∈S

Ps,a,b(s′)v(s′)

]
a∈As,b∈Bs

for all state s ∈ S, are optimal strategies in the transient stochastic game.

Proof 1 This theorem is essentially a particular case of theorem 4.2.6 in [2]. A
detailed proof can be found at [1].

Remark 2.1 The previous theorem ensures the existence of optimal strategies for
both players. Particularly they are in the subclass of stationary strategies. In the
proof of this theorem a map U such that

U v(s) =

[
rs(a, b) +

∑
s′∈S

Ps,a,b(s′)v(s′)

]∗
a∈As,b∈Bs

, (2.2)

which is a n-step contraction, is considered. Afterwards, we used the map U to
implement a numerical method to find a unique fixed point, that is the value of the
game.

3 The dice game

In this section we describe the states, actions, payoffs, and transition probabilities
(defined in section 2) corresponding to our dice game, and present the numerical
results, showing the optimal strategy for a player. This strategy, optimal in the
class of behaviour strategies, ensures a player to win with probability of at least 1/2
independently of the opponent strategy. The optimal strategy is pure and stationary,
and consists in a simple rule indicating whether to roll or to stop, depending on the
scores of the player and its opponent.

3.1 Modelling the dice game

To solve the dice game (compute optimal strategies), we model it as a transient
stochastic game. We have to specify the set of states, possible actions, payoffs and
transition probabilities.

(S) States: During the dice game, there are four aspect varying: the player j who
has the dice (j = 1, 2), the accumulated score α of player one, the accumulated
score β of player two and the turn score τ of the player j. So, we consider states
(j, α, β, τ). We also need to consider two special states: an initial state s0, and
a final state sf .
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Table 1: Possible actions for each player depending on the state of the game.
player one player two

si, sf to wait to wait
(1, α, β, 0) to roll to wait
(1, α, β, τ)0<τ<200−α to roll, to stop to wait
(1, α, β, τ)τ≥200−α to stop to wait
(2, α, β, 0) to wait to roll
(2, α, β, τ)0<τ<200−β to wait to roll, to stop
(2, α, β, τ)τ≥200−β to wait to stop

If the score of either of the players is greater or equal than 200 the game is over,
then, it is in the state sf . Because of that, states (j, α, β, τ), only make sense if
α < 200, β < 200. The same happen if τ is big enough to reach 200 stopping.
So the finite set S of possible states is

S = {s0, sf} ∪ S1 ∪ S2

where S1 is the set of states of the player one:

S1 = {(1, α, β, τ) : 0 ≤ α ≤ 199, 0 ≤ β ≤ 199, 0 ≤ τ ≤ 205− α}

and S2 is the set of states of the player two:

S2 = {(2, α, β, τ) : 0 ≤ α ≤ 199, 0 ≤ β ≤ 199, 0 ≤ τ ≤ 205− β}.

(A) Actions: We have to specify the set of actions per state for each player. Pos-
sible actions in this game are to roll and to stop. We add an extra action to
wait, which represents that is not the turn of the player. There are some con-
straints to ensure the transient condition of the stochastic game: in the states
(1, α, β, 0)α<200 does not make sense for player one to take the action to stop
because there’s nothing to loose. If in our model we permit taking the action to
stop with 0 points in the turn (τ = 0), is easy to see that there exist a pair of
strategies that make the game infinite. The same happen if the action to roll is
possible when stopping is enough to win. The table 1 shows the set of possible
actions per state.

(P) Payoffs: Because we want to maximise the probability of winning, we define
the payoff function in such a way that maximising the probability of winning
is equivalent to maximising the expected value V of the payoffs accumulated
along the game. The model of transient stochastic game allow us to define a
payoff for each pair (state, action) but in this case is enough to define the payoff
depending only on the state as follows:

rs =
{

1 if s = (1, α, β, τ) with α+ τ ≥ 200
0 else

7



(TP) Transition probabilities: To represent graphically the transition probabilities
we use the following representation for the states:

(1, α, β, τ) = ONMLHIJKατβ (2, α, β, τ) = βτα .

The dynamic of the game and the semantic of the states determine transition
probabilities between states. In the figure 1, the probability transitions from a
state (1, α, β, τ) with α + τ < 200, depending on the player decision are pre-
sented.

to roll
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1
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β

to stop

ONMLHIJKατβ

1

��
β0
α+τ

Figure 1: Transition probabilities from a state (1, α, β, τ) with α+τ < 200, depending
on the player decision.

Figure 1 shows that, when the decision is to roll, the distribution probability
on the states is associated with the results of rolling a dice; particularly the
probability of loosing the turn is 1/6. In the winning states of player one (i.e.
(1, α, β, τ) with α+ τ ≥ 200) the transition is, with probability one, to the final
state (sf ). Transitions for player two are completely symmetric. As is showed in
figure 2 in the special states si and sf transitions do not depend on the actions
taken by players, indeed they do not have options.

?>=<89:;si
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��������
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00
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1

kk

Figure 2: Transition probabilities from the initial and final states.

Now we verify that the stochastic game defined above is transient. We then prove
that sf satisfies conditions (1), (2) and (3) in definition 4. Conditions (1) and (2) are
trivially fulfilled, it remains to verify that

∞∑
t=0

Ps,π,ϕ(St 6= sf ) <∞,
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for all initial state s, and every pair of strategies π, ϕ.
Due to the fact that at the beginning of a turn the only option is to roll, and that

in a state in which the accumulated score is enough to win the player has to stop, the
game can not continue indefinitely.

For example, if a 6 is rolled consecutively 70 times it is impossible to avoid reaching
the final state. Denoting by γ the probability of rolling 70 times a 6, i.e. γ = 1/670 >
0, it is easy to see that γ is a lower bound for the probability of St = sf for t ≥ 70.
By a similar argument, it follows that, for n = 0, 1, . . .

P(St 6= sf ) < (1− γ)n if 70n ≤ t < 70 (n+ 1).

Then
∞∑
t=0

Ps,π,ϕ(St 6= sf ) < 70
∞∑
n=0

(1− γ)n <∞

and our model is transient.

3.2 Numerical results

In this section the results of the theorem 2.1 are applied to the particular case of the
transient stochastic game defined above. Rewriting the definition of application U,
defined in equation (2.2), we obtain:

U v(s) =



1
2v(1, 0, 0, 0) + 1

2v(2, 0, 0, 0) if s = si
v(1, α, β, 0)roll if s = (1, α, β, 0)
max {v(1, α, β, τ)stop, v(1, α, β, τ)roll} if s = (1, α, β, τ) : α+ τ < 200
1 if s = (1, α, β, τ) : α+ τ ≥ 200
v(2, α, β, 0)roll if s = (2, α, β, 0)
min {v(2, α, β, τ)stop, v(2, α, β, τ)roll} if s = (2, α, β, τ) : β + τ < 200
0 in other case

where
v(1, α, β, τ)roll = 1

6v(2, α, β, 0) + 1
6

∑6
k=2 v(1, α, β, τ + k)

v(1, α, β, τ)stop = v(2, α+ τ, β, 0)
v(2, α, β, τ)roll = 1

6v(1, α, β, 0) + 1
6

∑6
k=2 v(2, α, β, τ + k)

v(2, α, β, τ)stop = v(1, α, β + τ, 0).

Note that in the equations above we have replaced the value of the matrix games
in equation (2.2) by a maximum, in the states in which player one has to take the
decision, and by a minimum when is player two the one that has to do it. In the
states in which both players have only one choice the value of the matrix game is
the only entry of the matrix. Since there are no states in which both players have to
decide simultaneously, the stationary strategy that emerges from the theorem turns
out to be pure, i.e. each player takes an action with probability 1. To determine
the complete solution is necessary to specify which action should be taken in about
4 000 000 states. In figure 3 the optimal strategy for player one for some states is
shown. The complete solution can be found at
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β = 0 β = 150

β = 180 β = 185

Figure 3: Part of the optimal strategy for player one (for player two is symmetric).
It includes states with opponent score β = 0, 150, 180 & 185. In the gray zone the
optimal action is to roll and in the black zone is to stop.

www.cmat.edu.uy/cmat/docentes/fabian/documentos/optimalstrategy.pdf.
Some observations about the solution:

• At the beginning of the game, when both players have low scores, we see that
the optimal action is to roll when τ < 20 and to stop in the other case, following
the strategy found by Roters [5] maximising the expected value of a turn score.

The heuristic interpretation of this fact is: when far away from the target it is
optimal to approach it in steps as large as possible.

• When the opponent score β becomes larger the optimal strategy becomes riskier.
This can be explained because there are less turns to reach the target.

• For opponent scores greater or equal than 187 (β ≥ 187), the graphic becomes
absolutely gray. In other words, when the opponent is close to win, giving him
the dice is a bad idea.
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• To compare the optimal strategy with the one found by Haigh & Roters [3], we
simulate 10 000 000 games. Our simulation showed that in 52% of the games,
the winner was the player with the optimal strategy.

4 Two related games

4.1 Reaching exactly the target

It is interesting to explore how the optimal strategy changes when the game is mod-
ified. In this section we consider the same dice game, with the only difference being
that the condition to win is to reach exactly 200 points. If the sum of accumu-
lated and turn score is greater than 200 the turn finishes without capitalising any
point. The formulation of the game is quite similar, the difference appears when
the accumulated score plus the turn score is greater that 194, situation in which one
roll of the dice can exceed the target. As an example of the mentioned difference,
in figure 4 we show the transition probabilities when the accumulated score is 180
and the turn score is 16 (180 + 16 > 194). Note that the probability of losing the

to roll

_^]\XYZ[18016
β

3
6

�������������

1
6
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1
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��;;;;;;;;;;;
1
6
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β0
180

_^]\XYZ[18018
β

_^]\XYZ[18019
β

_^]\XYZ[18020
β

Figure 4: Example of transition probability in the variant of the game presented in
section 4.1.

turn is the probability of rolling a 1,5,6. In figure 5 part of the optimal strategy
for this variant of the game is shown. The complete optimal strategy is available in
www.cmat.edu.uy/cmat/docentes/fabian/documentos/optimalexactly.pdf.

Some remarks about the solution:

• As in the classical game, when the target is far, the strategy is similar to “stop
if τ > 20”.

• Unlike the classical game, the optimal strategy in this case never becomes so
risky. This is easy to understand because the probability of winning in any turn
is less or equal than 1/6, even in the case of being very close to the target.
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β = 0 β = 150

β = 180 β = 198

Figure 5: Part of the optimal strategy for player one (for player two is symmetric)
for the game presented in subsection 4.1. It includes states with opponent score
β = 0, 150, 180 & 198. In the gray zone the optimal action is to roll and in the black
zone is to stop.

• When α + τ = 194 there is a “roll zone” larger than usual, because 194 is the
largest score in which there is no risk of losing in one roll but it is possible to
win rolling a 6.

4.2 Maximising the expected difference

In the second variant of the game, the winner, when reaching the target, obtains from
the loser the difference between the target and the loser’s score.

Again, the model of the game is very similar to the classical model, the only
difference is the payoff function:

rs =


200− β, if s = (1, α, β, τ) with α+ τ ≥ 200,
α− 200, if s = (2, α, β, τ) with β + τ ≥ 200,
0, else.
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Figure 6 shows the optimal strategy for some opponent scores. The complete optimal
strategy can be found at
www.cmat.edu.uy/cmat/docentes/fabian/documentos/optimalmaxdif.pdf.
The main difference with the optimal strategy in the classical case, is that when one
player is close to win (taking into account his current turn score), he takes the risk
of rolling, this feature being observed for any score of the opponent.

β = 0 β = 150

β = 170 β = 180

Figure 6: Part of the optimal strategy for player one (for player two is symmetric)
for the variant presented in subsection 4.2. It includes states with opponent score
β = 0, 150, 170 & 180. In the gray zone the optimal action is to roll and in the black
zone is to stop.

5 Conclusion

In this paper we model a dice game in the framework of Markov competitive decision
processes (also known as stochastic games) in order to obtain optimal strategies for
a player. Our main results are the proof of the existence of a value and an optimal
minimax strategy for the game, and the proposal of an algorithm to find this strategy.
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We base our results on the theory of transient stochastic games exposed by Filar and
Vrieze in [2].

Previous mathematical treatments of this problem include the solution of the
optimal stopping problem for a player that wants to maximise the expected number
of points in a single turn (see Roters [5]) and the minimisation of the expected number
of turns required to reach a target (see Haigh and Roters and [3]). Another previous
contribution was done by Neller and Presser [4], who found the optimal strategy in
the set of stationary pure strategies, departing from a Bellman equation.

We also provide an algorithm to compute explicitly this optimal strategy (that
coincides with the optimal strategy in the larger class of behaviour strategies) and
show how this algorithm works in three different variants of the game.
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[1] Crocce, F. (2009). Juegos estocásticos transitorios y aplicaciones. Master thesis, PEDECIBA,
Montevideo, Uruguay.

[2] Filar, J. & Vrieze, K. (1997). Competitive Markov Decision Processes. Springer-Verlang,
New York.

[3] Haigh, J. & Roters, M. (2000). Optimal Strategy in a Dice Game. Journal of Applied
Probability 37, 1110–1116.

[4] Neller, T. & Presser, C. (2004). Optimal Play of the Dice Game Pig. The UMAP Journal
25.1, 25–47.

[5] Roters, M. (1998). Optimal Stopping in a Dice Game. Journal of Applied Probability 35,
229–235.

[6] Shapley, L.S. (1953). Stochastic games. Proc. of the Nat. Acad. Sciences 39, 1095-1100.

14


