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Abstract

The aim of this work is to describe the set of fixed point free homeomorphisms
of the plane (preserving orientation or not) under certain expansive conditions. We
find necessary and sufficient conditions for a fixed point free homeomorphism of the
plane to be topologically conjugate to a translation.

1 Introduction.

In [1], [2], necessary and sufficient conditions for a homeomorphism of the plane with
one fixed point to be topologically conjugate to a linear hyperbolic automorphism was
proved. The discovery of a hypothesis about the behavior of Lyapunov functions at infinity
was essential for this purpose. In this work we will describe the set of fixed point free
homeomorphisms of the plane which admit a Lyapunov metric function under certain
conditions. These homeomorphisms are expansive respect to the Lyapunov metric U ,
meaning U : IR2 × IR2 → IR continuous and positive (i.e. it is equal to zero only on the
diagonal) and W = ∆(∆U) positive with ∆U(x, y) = U(f(x), f(y)) − U(x, y). As it is
well known, expansive homeomorphisms on compact surfaces were classified by Lewowicz
in [3] and Hiraide in [8]. As a matter of fact, we began by studying whether some of
the results obtained in the previously cited article could be adapted to our new context
(i.e. without working in a compact environment but having the local compactness of the
plane). These arguments will allow us to construct singular transverse foliations F s and
Fu. A singular foliation F on IR2 is a decomposition of IR2 as a disjoint union of leaves.
Any point x ∈ IR2 outside of a discrete set S has a chart ϕ : U → IR2 carrying the
components of U ∩ F to horizontal intervals.
For x ∈ S, x has a chart ϕ : U → IR2 taking F ∩ U → Wk, where Wk is the standard
k-prong singularity or singularity with k separatrices illustrated for k = 4 in figure 1.
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Figure 1:

We call the elements of S by singular points of F .
Two singular foliations are transverse if they have the same singular points and at all
other points the leaves are transverse. The main result of this article, theorem 4.0.3,
states: Let f be a homeomorphism of IR2 which is fixed point free and admits a Lyapunov
function U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric,

• For each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively,

• f has no singularities (F s and Fu are nonsingular),

f is topologically conjugate to a translation of the plane if and only if U admits condition
HP which states that given any compact set C ⊂ IR2 the following properties hold:

• there exists k > 0 such that

|V (x, y)− V (x, z)| ≤ k for all y, z in C and for all x ∈ IR2,

and

• W (x, y) tends to infinity as ‖x‖ tends to infinity, uniformly with y ∈ C.

Condition HP arises while searching for sufficient conditions for asserting that every
leaf of F s intersects every leaf of Fu. This fact will be essential to prove the above result
Let us take as an example a translation of the plane and show that admits a Lyapunov
metric function with the condition HP. For this aim we will adapt some arguments used
by White in [7]. Let T be a translation of the plane defined by T (x, y) = (x + 1, y + 1).
Fix λ > 1 and consider the Riemannian structure defined by

<< u, v >>σ= λ−2y < u, e1 >< v, e1 > +λ2x < u, e2 >< v, e2 >,

where e1 = (1, 0), e2 = (0, 1) and σ = (x, y). The metric induced on the plane by this
Riemannian metric is defined by

dσ(p, q) = inf
γ

∫
[0,1]

‖γ′(t)‖σdt,
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where γ is an arc joining points p and q. The topology induced by dσ on the plane is the
same that is induced by the usual metric. Let γ = (γ1, γ2) : [0, 1] → IR2 be a curve joining
points p and q of IR2. We can consider two pseudo metrics Ds and Du defined by

Ds(p, q) = inf
γ

∫
[0,1]

λ−γ2(t)| < γ′(t), e1 > |dt,

and

Du(p, q) = inf
γ

∫
[0,1]

λγ1(t)| < γ′(t), e2 > |dt.

By a simple computation we can prove that

Ds(T (p), T (q)) = λ−1Ds(p, q),

and
Du(T (p), T (q)) = λDu(p, q).

Consider the Lyapunov metricD of IR2 defined by D = Ds+Du. Lets test some conditions
required for D:

(I) Signs for ∆(D).
∆D(x, y) = D(f(x), f(y))−D(x, y) =

Ds(f(x), f(y))−Ds(x, y) +Du(f(x), f(y))−Du(x, y) =

(λ− 1)Du(x, y)− (1− 1/λ)Ds(x, y).

For every point x ∈ IR2 and for every k > 0, there are points y in the boundary of
Bk(x) such that Du(x, y) = 0 (this is true because Du(x, y) = 0 if x and y belong
to the same horizontal line). Therefore, ∆D(x, y) < 0 as we wanted. A similar
argument lets us find points z ∈ IR2 such that ∆D(x, z) > 0.

(II) Property HP. Let V = ∆D and W = ∆2D.
Since

∆2D(x, y) = ∆D(f(x), f(y))−∆D(x, y) =

(λ− 1)2Du(x, y) + (1− 1/λ)2Ds(x, y),

we can conclude that ∆2D(x, y) tends to infinity when ‖x‖ tends to infinity. This
is true because Du(x, y) or Ds(x, y) tends to infinity when ‖x‖ tends to infinity:
In fact, if x and y belongs to the same horizontal line then Du(x, y) = 0 and
Ds(x, y) = λ−k‖x−y‖, k ∈ IR tends to infinity as ‖x‖ tends to infinity through this
horizontal line.
Now,

|∆D(x, y)−∆D(x, z)| ≤

(λ− 1)|Du(x, y)−Du(x, z)| + (1− 1/λ)|Ds(x, y)−Ds(x, z)| ≤

(λ− 1)Du(z, y) + (1− 1/λ)Ds(z, y).

Therefore |∆D(x, y)−∆D(x, z)| is uniformly bounded when points y and z lie on
a compact set. Hence property HP holds.
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2 Constructing foliations.

Let f : IR2 → IR2 be a homeomorphism of the plane that admits a Lyapunov metric
function U , meaning U : IR2 × IR2 → IR continuous and positive (i.e. it is equal to zero
only on the diagonal) and W = ∆(∆U) positive with ∆U(x, y) = U(f(x), f(y))−U(x, y).

Remark 2.0.1 During this work we require the existence of such a Lyapunov function
U , unlike in the compact case where expansiveness is a necessary and sufficient condition
for the existence of a Lyapunov function (see [3]). Fathi in [9] proved the existence of a
Lyapunov metric function for an expansive homeomorphism on a compact metric space.

In this section we will resume some results of Lewowicz in [3], and Groisman in [1]. We
will work with the topology induced by a Lyapunov function U and define the k-stable
set in the following way:

Sk(x) = {y ∈ IR2 : U(fn(x), fn(y)) ≤ k, n ≥ 0}.

Similar definition for the k-unstable set. Let f be a homeomorphism of the plane that
admits a Lyapunov function U : IR2 × IR2 → IR such that the following properties hold:

(1) U is a metric in IR2 and induces the same topology in the plane as the usual

metric. Observe that given any Lyapunov function it is possible to obtain another
Lyapunov function that verifies all the properties of a metric except, perhaps, for
the triangular property.

(2) Existence of both signs for the first difference of U . For each point x ∈ IR2

and for each k > 0 there exist points y and z on the boundary of Bk(x) such that
V (x, y) = U(f(x), f(y)) − U(x, y) > 0 and V (x, z) = U(f(x), f(z)) − U(x, z) < 0,
respectively.

The following two propositions establish the dynamic consequences of the existence of a
Lyapunov function with the above conditions.

Proposition 2.0.1 A homeomorphism f that admits a Lyapunov function U defined at
IR2 × IR2 is U-expansive. This means that given two different points of the plane x, y and
given any k > 0, there exists n ∈ Z such that

U(fn(x), fn(y)) > k.

Proof: Let x and y be two different points of the plane such that V (x, y) = U(f(x), f(y))−
U(x, y) > 0. Since ∆V > 0, then V (fn(x), fn(y)) > V (x, y) holds for n > 0. This means
that U(fn(x), fn(y)) grows to infinity, since

U(fn(x), fn(y)) = U(x, y) +

n−1∑
j=0

V (f j(x), f j(y)) >

U(x, y) + nV (x, y).
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Thus, given k > 0 there exists n ∈ IN such that

U(fn(x), fn(y)) > k.

By using similar arguments we can prove the case when V (x, y) = U(f(x), f(y)) −
U(x, y) < 0. Since W (x, y) > 0, if V (x, y) = 0, then V (f(x), f(y)) > 0 and we fall
in the first case considered. �

Definition 2.0.1 Let f : IR2 → IR2 be a homeomorphism of the plane that admits a
Lyapunov metric function U . A point x ∈ IR2 is a stable (unstable) point if given any
k′ > 0 there exists k > 0 such that for every y ∈ Bk(x), it follows that U(fn(x), fn(y)) < k′

for each n ≥ 0 (n ≤ 0).

Proposition 2.0.2 Property (2) for U implies the non-existence of stable (unstable)
points.

Proof: Given the existence of both signs for V (x, y) = U(f(x), f(y)) − U(x, y) in any
neighborhood of x, we can state that for each k > 0, there exists a point y in Bk(x) such
that V (x, y) > 0. Since ∆V > 0, we can state that V (fn(x), fn(y)) > V (x, y) for n > 0,
so U(fn(x), fn(y)) grows to infinity. Thus, there are no stable points. We can use similar
arguments for the unstable case. �

Definition 2.0.2 Let Ck(x) (Dk(x)) be the connected component of the k-stable (k-
unstable) set that contains x. We say that p ∈ IR2 has local product structure if a map
h : IR2 → IR2 which is a homeomorphism over its image (p ∈ Im(h)) exists and there ex-
ists k > 0 such that for all (x, y) ∈ IR2 it is verified that h({x}×IR) = Ck(h(x, y))∩Im(h)
and h(IR× {y}) = Dk(h(x, y)) ∩ Im(h).

Proposition 2.0.3 Except for a discrete set of points, that we shall call singular, every x
in IR2 has local product structure. The stable (unstable) sets of a singular point y consists
of the union of r arcs, with r ≥ 3 that meet only at y. The stable (unstable) arcs separate
unstable (stable) sectors.

Proof: (See Section 3, [3])

Remark 2.0.2 The neighborhood’s size where there exists a local product structure may
become arbitrarily small. However we are able to extend these stable and unstable arcs
getting curves that we will denote as W s(x) and W u(x), respectively. If two points y and
z belong to W s(x) (W u(x)), then U(fn(y), fn(z) < k for some k > 0 and for all n ≥ 0
(n ≤ 0).

Finally, we have conditions to state the following theorem:

Theorem 2.0.1 Let f be a homeomorphism of the plane that admits a Lyapunov function
U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric.

• For each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively.

Then, f admits transverse singular foliations F s and Fu. Leaves of F s (Fu) are the
stable (unstable) curves constructed in this section.
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3 Foliation description.

In this section we describe those foliations introduced in the previous section with one
additional condition for the Lyapunov function U :
Property HP. Let V = ∆U and W = ∆2U . Given any compact set C ⊂ IR2 the
following properties hold:

• there exists k > 0 such that

|V (x, y)− V (x, z)| ≤ k for all y, z in C and for all x ∈ IR2,

and

• W (x, y) tends to infinity as ‖x‖ tends to infinity, uniformly with y ∈ C.

In [2] these foliations were characterized in the case when the homeomorphism f has no
singularities and it has a fixed point. Now we will generalize these results for the case
when f is fixed point free. The following lemmas refer to these foliations and we will use
them in the proof of theorem 3.0.2.

Lemma 3.0.1 Let f be a homeomorphism of the plane which verifies the conditions of
this section. Then stable and unstable curves intersect each other at most once.

Proof: If they intersect each other more than once, we would contradict U -expansiveness:
if two different points x and y belong to the intersection of a stable and an unstable curve,
then there exists k0 > 0 such that U(fn(x), fn(y) < k0 for all n ∈ Z. �

Lemma 3.0.2 Every stable (unstable) curve separates the plane.

Proof: See section 3 [1]

Theorem 3.0.2 Let f be a homeomorphism of the plane such that the following condi-
tions hold:

• f admits a Lyapunov metric function U : IR2 × IR2 → IR. This metric induces in
the plane the same topology as the usual distance;

• f has no singularities;

• for each point x ∈ IR2 and any k > 0, there exist points y and z in the boundary of
Bk(x) such that V (x, y) = U(f(x), f(y))−U(x, y) > 0 and V (x, z) = U(f(x), f(z))−
U(x, z) < 0, where Bk(x) = {y ∈ IR2 /U(x, y) ≤ k}.

• Property HP.

Then, there exist transverse foliations F s and Fu such that every leaf of F s intersects
every leaf of Fu.

Proof: Let F s and Fu be the stable and unstable foliations constructed in the last section.
Let x an arbitrarily point of IR2 and denote by W s(x) and W u(x) the leaves of F s and
Fu through x. We will divide this proof in two steps:
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• If W u(y) ∩ W s(x) 6= ∅ then W s(y) ∩ W u(x) 6= ∅, for every point y in IR2. If this
statement was not true, let z be the first point of the unstable segment of W u(y)
determined by q ({q} = W u(y) ∩W s(x)) and y such that W s(z) ∩W u(x) = ∅ (see
fig. 2). This first point exists since f has no singularities, W s(q) intersects W u(x)
and the fact that F s and Fu are continuous foliations. Let (zn) be a sequence of

x Wu(x)

W s(x)

z
Wu(y)

W s(z)

q

Figure 2:

W u(y) such that zn converges to z and W s(zn) ∩W u(x) 6= ∅, for all n. Let wn be
a sequence defined by wn = W s(zn) ∩W u(x). As n grows, the behavior of wn has
two possibilities. In the first situation we could find points wn = W s(zn) ∩W u(x)
arbitrarily close to infinity. Since for each n we have that V (wn, zn) < 0 (because
they belong to the same stable leaf) and V (wn, x) > 0 (because they belong to the
same unstable leaf), there exists a point qn, belong to the line segment znx, such
that V (wn, qn) = 0. Since zn and qn belong to a compact set for all n, we can apply

x

zzn

qn

wn

Figure 3:

condition HP and find n ∈ IN such that

|V (wn, zn)− V (wn, qn)|

W (wn, zn)
< 1,

which implies that
W (wn, zn) + V (wn, zn) > 0,

and then
V (f(wn), f(zn)) > 0.

This yields a contradiction since points f(wn), f(zn) are in the same stable leaf.
In the second situation the set {wn : n ∈ IN} is bounded. Let us consider, as figure
4 shows, the line segment wnzn and the compact arc bn of W s(zn) determined by
the points wn and zn. Let hn be a point of the arc bn such that ‖hn‖ → ∞ when
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x

zzn

qn

wn

hn

rn
Wu(hn)

Figure 4:

n → ∞ (such sequence (hn) exists since W s(z) separates the plane and F s is a
continuous foliation). W u(hn) must intersect the line segment wnzn. Otherwise, it
would cut W s(zn) more than once. Let rn be that intersection point. We want to
apply our condition HP. Observe that points rn, zn would be in a compact set for
all n ∈ IN and hn tends to infinity when zn tends to z. V (hn, rn) > 0 because they
belong to the same unstable leaf, and V (hn, zn) < 0 because they belong to the
same stable leaf. So, there exists a point qn that belongs to line segment znrn such
that V (hn, qn) = 0. Then

lim
n→∞

|V (hn, zn)− V (hn, qn)|

W (hn, zn)
= 0.

Therefore, we can choose hn such that

W (hn, zn) + V (hn, zn) > 0,

which implies that
V (f(hn), f(zn)) > 0.

This contradicts the fact that points f(hn), f(zn) are in the same stable leaf.

• W u(y) ∩ W s(x) 6= ∅ and W s(y) ∩ W u(x) 6= ∅, for every point y in IR2. Let us
consider the set A consisting of the points whose stable (unstable) leaf intersects
the unstable (stable) leaf of point x. It is clear that A is open. Let us prove that it
is also closed. Let (qn) be a sequence of A, convergent to some point q (see figure
5). Let V (q) be a neighborhood of q with local product structure. Let us consider

p

Wu(q)

W s(q)

Wu(qn0
)

W s(qn0
)

V (q)

q
qn0

αn0

Figure 5: Coordinates
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qn0
∈ V (q). So, we have that W s(qn0

) ∩W u(q) = αn0
as a consequence of the local

product structure and W s(qn0
) ∩W u(p) 6= ∅ since qn0

∈ A. But then αn0
is a point

in W s(qn0
) that cuts the unstable leaf of point x, and then, applying the previous

step we have that W u(q) = W u(αn0
) must cut the stable leaf of point x. A similar

argument lets us prove that the stable leaf of q must cut the unstable leaf of point
x. Therefore q belongs to the set A and consequently A is closed. Then A is the
whole plane.

Since x is an arbitrary point, this proof is finished. �

4 Main section.

Let f be a fixed point free homeomorphism of IR2. Brouwer’s translation theorem (see [4],
[5]) asserts that if f preserves orientation, then every x0 ∈ IR2 is contained in a domain
of translation for f , i.e. an open connected subset of IR2 whose boundary is L ∪ f(L)
where L is the image of a proper embedding of IR in IR2, such that L separates f(L)
and f−1(L). The purpose of this section is to find some domain of translation of a fixed
point free homeomorphism of IR2 which admits a Lyapunov metric function U such that
properties presented in the last section hold. This situation will allow us to prove that the
homeomorphisms discussed in theorem 3.0.2 are topologically conjugate to a translation
of the plane.

Lemma 4.0.3 Let f be a homeomorphism of IR2 which admits a Lyapunov function U :
IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric;

• for each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively.

Let W s be an arbitrary non-invariant leaf of F s such that W s separates f(W s) and
f−1(W s). Define D as the open connected subset of IR2 whose boundary is W s ∪ f(W s)
and the open set U =

⋃
fk(D) with k ∈ Z. If U 6= IR2 then the boundary of U consists of

the union of leaves of F s. Similarly for the unstable case.

Proof: If U 6= IR2 then there exists a point p and a sequence (xn) such that xn ∈
fn(W s) n > 0(n < 0) and lim xn = p. Let W s(p) be the leaf of F s through p. Using
continuity of F s respect to the initial point we could state that every point of W s(p) is
the limit of a sequence (yn) such that yn ∈ fn(W s) n > 0(n < 0). Thus, W s(p) is included
in the boundary of U . If W s(p) is non invariant then all the iterates of W s(p) are also
included in the boundary of U . �

Lemma 4.0.4 Let f be a homeomorphism of IR2 which is fixed point free and admits a
Lyapunov function U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric,
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• for each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively,

• U admits condition HP,

• f has no singularities.

If W s (W u) is an arbitrary non invariant leaf of F s (Fu), then W s (W u) separates
f 2(W s) (f 2(W u)) and f−2(W s) (f−2(W u)).

Proof: Let W s be an arbitrary non invariant leaf of F s and consider the leaves f(W s)
and f−1(W s). Let us suppose that none of these three leaves separates the others (see
fig. 6). Take any point x in W s. Applying theorem 3.0.2 we have that W u(x) must

x

W s

f(W s)

f−1(W s)

Figure 6:

intersect transversally f(W s) and f−1(W s). Also, recall that in lemma 3.0.1 we proved
that stable and unstable leaves intersect each other at most once. Then W u(x) goes from
one component to the other determined by W s only once (remember that W s separates
the plane). Since we are assuming that W s does not separate f(W s) and f−1(W s), then
these two leaves are in the same component determined by W s. So, if W u(x) intersects
f(W s) then it can not intersect f−1(W s) (because if it does, we would have either more
than one intersection between W u(x) and f(W s) or an auto intersection of W u(x)). That
yields a contradiction. Then, one of the three stable leaves separates the other two. Then
W s must separate f 2(W s) and f−2(W s). �

Lemma 4.0.5 Let f be a homeomorphism of IR2 which is fixed point free and admits a
Lyapunov function U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric,

• for each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively,

• U admits condition HP,

• f has no singularities.
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If W s (W u) is an arbitrary non invariant leaf of F s (Fu) such that W s (W u) does not
separate f(W s) (f(W u)) and f−1(W s) (f−1(W u)), then f 2n(W s) or f−2n(W s), n > 0, is
a sequence of stable leaves converging to a f 2-invariant stable leaf.

Proof: Let us suppose that f(W s) separates W s and f−1(W s). As fig. 7 shows let
us consider an unstable arc a joining a point x of f(W s) with a point y of W s. Since

a
x

y

z

W s f(W s)f2(W s)

W s(z)

x4

x2

f3f4

Figure 7:

fn(W s) must separate fn−1(W s) and fn−2(W s) we conclude that fn(W s) must intersect
the compact arc a in a point xn. Using lemma 4.0.4, we can state that sequence x2n is
monotone and bounded. Let us denote by z its limit. Since W s(z) separates f−2(W s)
and f 2(W s) we conclude that W s(z) is f 2-invariant. The other case is analogous.

Lemma 4.0.6 Let f be a homeomorphism of IR2 which is fixed point free and admits a
Lyapunov function U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric,

• for each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively,

• U admits condition HP.

Then U∗ = U is a Lyapunov function for f 2 which verifies the conditions established for
U .

Proof: By a simple computation, we have that:

V ∗(x, y) = U∗(f 2(x), f 2(y))− U∗(x, y) = V (f(x), f(y)) + V (x, y),

W ∗(x, y) = V ∗(f 2(x), f 2(y))− V ∗(x, y)

= W (f 2(x), f 2(y)) + 2W (f(x), f(y)) +W (x, y).

For each point x ∈ IR2 and for each k > 0, there exists y ∈ W s
f (x) ∩ ∂Bk(x) and

z ∈ W u
f (x) ∩ ∂Bk(x) (this is true because W s and W u separate the plane). Then

V ∗(x, y) = V (f(x), f(y)) + V (x, y) < 0
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and
V ∗(x, z) = V (f(x), f(z)) + V (x, z) > 0.

|V ∗(x, y)− V ∗(x, z)|

≤ |V (f(x), f(y))− V (f(x), f(z))|+ |V (x, y)− V (x, z)|.

Therefore |V ∗(x, y)−V ∗(x, z)| is uniformly bounded when points y and z lie on a compact
set.
Since

W ∗(x, y) = W (f 2(x), f 2(y)) + 2W (f(x), f(y)) +W (x, y),

then W ∗(x, y) tends to infinity as ‖x‖ tends to infinity and y lies in a compact set. Hence
property HP holds for U∗. �

Lemma 4.0.7 Let f be a homeomorphism of IR2 which is fixed point free and admits a
Lyapunov function U : IR2 × IR2 → IR which verifies the conditions established in lemma
4.0.6. Then, f does not have any invariant stable or unstable leaf.

Proof: Let us reason by contradiction and suppose that there exists an invariant stable
leaf W s. Let x be a point of W s. Since f is a fixed point free homeomorphism, W s

separates the plane and is invariant under f , we can conclude that ‖fn(x)‖ tend to
infinity as n grows and that there exists k > 0 such that U(fn(x), fn+1(x)) ≤ k, for all
n ≥ 0. We claim that W (x, fn(x)) is uniformly bounded for all n ≥ 0. By definition we
have that

W (x, fn(x)) ≤ |V (f(x), fn+1(x))|+ |V (x, fn(x))|.

|V (x, fn(x))| = U(x, fn(x))− U(f(x), fn+1(x))

≤ U(x, f(x)) + U(f(x), fn+1(x)) + U(fn+1(x), fn(x))− U(f(x), fn+1(x))

= U(x, f(x)) + U(fn+1(x), fn(x)) ≤ 2k.

Therefore, W (x, fn(x)) is uniformly bounded by 4k, and this contradicts condition HP.
�

Theorem 4.0.3 Let f be a homeomorphism of IR2 which is fixed point free and admits a
Lyapunov function U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric,

• for each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively,

• f has no singularities.

Then, f is topologically conjugate to a translation of the plane if and only if U admits
condition HP.
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Proof: If f admits a Lyapunov function which verifies the conditions established in the
statement then f must preserve orientation. This is true because if f does not preserve
orientation there must exist a non invariant stable (or unstable) leaf W s such that W s

does not separate f−1(W s) and f(W s). Applying lemma 4.0.5 the existence of a f 2-
invariant leaf S of F s is guaranteed and applying lemmas 4.0.6 and 4.0.7 we arrive to
a contradiction. Therefore we have that f preserves orientation and every stable (or
unstable) leaf W s must separate f−1(W s) and f(W s). Let W s be an arbitrary non
invariant leaf of F s. Define D as the open connected subset of IR2 whose boundary is
W s ∪ f(W s) and the open set U =

⋃
fk(D) with k ∈ Z. U is an open set invariant under

f such that the restriction of f to U is topologically conjugate to a translation of IR2. If
U = IR2, then the theorem is proved. If not, applying lemmas 4.0.3 and 4.0.4 there exists
a f 2-invariant stable leaf S in the boundary of U (since S separates f 2(S) and f−2(S), it
is easy to prove that S is f 2-invariant). Then applying lemmas 4.0.6 and 4.0.7 we arrive
once more to a contradiction.

Reciprocally, lets consider the translation of the plane T defined by T (x, y) = (x +
1, y+1). It was proved at the introduction that T admits a Lyapunov metric function D
with the conditions required in this theorem. Now, lets see the case when f is conjugated
to a translation T . Let us define a Lyapunov function for f such as

L(p1, p2) = D(H(p1), H(p2)),

where D is the previous defined Lyapunov metric function for T and H is a homeomor-
phism from IR2 over IR2 such that H ◦ f = T ◦H . It follows easily that L is a Lyapunov
metric function for f such that property HP holds. This conclude the proof. �

Using the results of [1], [2] and the last theorem we can state the following general
characterization theorem:

Theorem 4.0.4 Let f be a homeomorphism of IR2 which admits a Lyapunov function
U : IR2 × IR2 → IR such that the following properties hold:

• U is a metric in IR2 and induces the same topology in the plane as the usual metric,

• For each point x ∈ IR2 and for each k > 0 there exist points y and z on the
boundary of Bk(x) such that V (x, y) = U(f(x), f(y))− U(x, y) > 0 and V (x, z) =
U(f(x), f(z))− U(x, z) < 0, respectively,

• f has no singularities.

Then,

• If f admits a fixed point, then f is conjugated to a linear hyperbolic automorphism
if and only if U admits condition HP;

• If f is fixed point free then f is topologically conjugate to a translation of the plane
if and only if U admits condition HP.
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