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Abstract
Let f : M → M be a diffeomorphism defined in a d-dimensional compact

boundary-less manifold M . We prove that generically C1-robustly expansive
homoclinic classes H(p), p an f -hyperbolic periodic point, are hyperbolic.

1 Introduction

In this article we pursue to analyze the influence of robust expansiveness property
on the behavior of the tangent map of a homoclinic class associated to a hyperbolic
periodic point of a diffeomorphism. In previous papers we use to say that the
homoclinic class H(p, f) is robustly expansive when its continuation H(pg, g) for
g close to f are expansive with a common constant of expansiveness α > 0 while
we say that the class H(p, f) is persistently expansive when the continuations are
expansive but the expansivity constant may go to zero. Before stating our result
we would like to change the name of these concepts in order to normalize them
according to the usual meaning of robustness in the literature.

Let M be a compact connected boundary-less Riemmanian d-dimensional man-
ifold and f : M → M a homeomorphism. Let K be a compact invariant subset of
M and dist : M ×M → IR a metric on M and α > 0. We say that f restricted
to K is α-expansive when dist(fn(x), fn(y)) ≤ α for all x, y ∈ K and all n ∈ ZZ
implies x = y. The number α > 0 is called a constant of expansiveness for f and
K, and sometimes we say that f is expansive in K if α is fixed.

Definition 1.1. We say that H(p, f) is Cr-robustly expansive (r ≥ 1) iff there
exists a Cr-neighbourhood U(f) of f such that for all g ∈ U(f), there exist pg the
continuation of p and α(g) > 0 such that g is α(g)-expansive on H(pg, g) .
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Definition 1.2. Let p be a hyperbolic periodic point of f. We say that the ho-
moclinic class H(p, f) is uniformly Cr-robustly expansive (r ≥ 1) iff there exist
α > 0 and a Cr-neighborhood U(f) of f such that for all g ∈ U(f), there exists a
continuation pg of p such that g is α-expansive in H(pg).

In [PPV] it is studied the case when H(p) is uniformly C1-robustly expansive
and p has index 2, where M is three dimensional, proving in this case that H(p)
has a dominated splitting and for an open dense subset of U(f) in the C1-topology,
f |H(p) is hyperbolic. Although [PPV] refers only to three dimensional manifolds,
these results extend to the case of d-dimensional manifolds with H(p) a codimen-
sion one homoclinic class, see Remark 1.2 below. Moreover, in [SV] we studied
the case of C1-robustly expansive homoclinic classes in any codimension (called
there persistently expansive homoclinic classes). It is proved in [SV] that for C1-
robustly expansive homoclinic classes H(p, f) there always exists an homogeneous
dominated splitting and some sufficient condition is given so that this dominated
class is actually hyperbolic. In this paper we study C1-robustly homoclinic classes
under generic conditions. Indeed, our main result is:

Theorem A. There exists a residual set R in Diff1(M) such that if f ∈ R has
a hyperbolic periodic point p with its homoclinic class H(p) C1-robustly expansive,
then H(p) is hyperbolic.

Let us assume that f/H(p) is C1-robustly expansive. More precisely, let U a
C1-neighborhood of f such that for all g ∈ U g/H(pg) is expansive. Then we have

Corollary 1.1. There exists an open and dense subset V ⊂ U such that for all
g ∈ V we have g/H(pg) is hyperbolic.

Remark 1.2. In fact it was proved in [PPSV] that when f/H(p) is uniformly C1-
robustly expansive and p has index 1 or d−1, dim(M) = d, then H(p) is hyperbolic.
We now prove that this holds C1-generically no matter what the index of p is.
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2 Proof of Theorem A

First we recall a definition and some results from previous papers.
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Definition 2.1. We say that a compact f-invariant set Λ admits a dominated
splitting if the tangent bundle TΛM has a continuous Df -invariant splitting E⊕F
and there exist C > 0, 0 < λ < 1 such that

‖Dfn
|E(x)‖ · ‖Df−n

|F (fn(x))‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0.

We say that the dominated splitting is homogeneous if the dimension of E(x) is
constant for all x ∈ Λ.

Definition 2.2. We say that a compact f-invariant set Λ is hyperbolic if the tan-
gent bundle TΛM has a continuous f-invariant splitting E ⊕ F and there exist
C > 0, 0 < λ < 1 such that

‖Dfn
|E(x)‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0,

and
‖Df−n

|F (x)‖ ≤ Cλn ∀x ∈ Λ, n ≥ 0.

Theorem 2.1. Let f ∈ Diffr(M), r ≥ 1, with a hyperbolic periodic point p such that
its homoclinic class H(p) is C1-robustly expansive. Then H(p) has an homogeneous
dominated splitting E ⊕ F .

Proof. See [SV, Theorem 1].

If q, r ∈ H(p) are hyperbolic periodic points such that W s(q)>∩W u(r) 6= ∅ and
W u(q)>∩W s(r) 6= ∅ then we say that r and q are homoclinically related and write
q ∼ r. Clearly if W s(q)>∩W u(r) 6= ∅ and W u(q)>∩W s(r) 6= ∅ then dim(W s(r)) =
dim(W s(q)) and dim(W u(r)) = dim(W u(q)). Moreover, by Palis’ λ-lemma, ”∼” is
an equivalence relation and if q ∼ p then H(p) = H(q).

Theorem 2.2. Let f ∈ Diffr(M), r ≥ 1, with a hyperbolic periodic point p such
that its homoclinic class H(p) is C1-robustly expansive. Then there exist W a C1-
neighbourhood of f , C > 0, 0 < λ < 1 and m > 0 such that if g ∈ W, q is a
g-hyperbolic periodic point of period π(q) and q ∼ pg, where pg is the continuation
of p, then

k−1∏

i=0

‖Dgm
/Es(gim(q))‖ < Cλk and

k−1∏

i=0

‖Dg−m
/Eu(g−im(q))

‖ < Cλk (1)

where k = [π(q)/m] ( here [ . ] represents the integer part.).

Proof. See [SV, Theorem 2], the statement there is slightly different from the given
here but both are equivalent.
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The following proposition is a consequence of [HPS], see also [Ma2] and [PS1].

Proposition 2.3. Let Λ = H(p, f) having dominated splitting E ⊕ F. Then there
exist φs : Λ → EmbΛ(Ds

1,M) and φu : Λ → EmbΛ(Du
1 ,M) such that defining

W cs
ε (x) = φs(x)Ds

ε and W cu
ε (x) = φu(x)Du

ε the following hold:

1. TxW cs(x) = E(x) and TxW cu(x) = F (x).

2. For every 0 < ε1 < 1 there exists 0 < ε2 < 1 such that f(W cs
ε2 (x)) ⊂

W cs
ε1 (f(x)) and f−1(W cu

ε2 (x)) ⊂ W cu
ε1 (f−1(x)).

We shall call W cs
ε and W cu

ε the local center-stable and center-unstable manifolds
respectively. Observe that for any ε > 0 there exists ρ(ε) > 0 such that for all
x ∈ H(p), W cs

ε contains a ball of radius ρ(ε) inside the local center stable manifold
(with respect to the Riemannian metric inherited from M), the same for W cu

ε (x).
For the sake of simplicity we shall assume ρ(ε) = ε. Also, for y ∈ W cs

ε (x) we shall
denote E(y) = TyW

cs
ε (x), and for y ∈ W cu

ε (x) we shall denote F (y) = TyW
cu
ε (x).

Lemma 2.4. Let C, λ be as in Theorem 2.2 and let δ > 0 be such that λ′ =
λ(1 + δ) < 1 and let q ∼ p. Then, there exists 0 < ε1 < ε such that if for all
0 ≤ n ≤ π(q) it holds that for some ε2 > 0, fn(W cs

ε2 (q)) ⊂ W cs
ε1 (fn(q)) then

fπ(q)(W cs
ε2 (q)) ⊂ W cs

Cλ′π(q)ε2
(q) .

Similarly, if f−n(W cu
ε2 (q)) ⊂ W cu

ε1 (f−n(q)) then

f−π(q)(W cu
ε2 (q)) ⊂ W cu

Cλ′π(q)ε2
(q) .

Proof. See [SV, Lemma 4].

Let N > 0 be such that Cλ′N ≤ 1/2 and let us define S = {q ∼ p / π(q) ≥ N}.
Clearly we have clos(S) = H(p).

2.1 Generic assumptions.

Now we define the residual set R required in the statement of Theorem A: it is
defined as the set that satisfy the generic properties listed below. We give references
that do not intend to be exhaustive, see also [ABCDW].

There exists a residual subset R of Diff1(M) such that if f : M → M is a diffeo-
morphisms belonging to R then

1. f is Kupka-Smale, (i.e.: all periodic points are hyperbolic and their stable
and unstable manifolds intersect transversally) (see [PM]).
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2. for any pair of saddles p, q, either H(p, f) = H(q, f) or H(p, f)∩H(q, f) = ∅
3. for any saddle p of f , H(p, f) depends continuously on g ∈ G (see [CMP]).

4. every chain recurrent class containing a periodic point p is the homoclinic
class associated to that point (see [BC]).

Lemma 2.5. Let f ∈ R and H(p) be C1-robustly expansive. Let α be an expansivity
constant of H(p, f). Then, given ε1 < α there exists ε2 such that the following
statements hold:
(a) For all q ∈ S, fn(W cs

ε2 (q)) ⊂ W cs
ε1 (fn(q)) ∀ n ≥ 0 . Similarly for the center-

unstable manifolds.
(b) for all y ∈ W cs

ε2 (q), q ∈ S, limn→+∞ dist(fn(q), fn(y)) = 0. Similarly for the
center-unstable manifolds.

Proof. To prove (a) let us begin defining

ε(q) = sup{ε > 0 / fn(W cs
ε (q)) ⊂ W cs

ε1 (fn(q)), ∀n ≥ 0}.

On account of the periodicity of q ∼ p and by Proposition 2.3 and Lemma 2.4
ε(q) > 0. If we prove that the infimum ε2 in q ∈ S of ε(q) is positive then we
are done. Suppose on the contrary that for some sequence {qn} ⊂ S we have
that ε(qn) → 0 when n → +∞. Let mn > 0 and yn ∈ W cs

ε(qn)(qn) be such that
dist(fmn(qn), fmn(yn)) = ε1. By Lemma 2.4

fπ(qn)W cs
ε(qn)(qn) ⊂ W cs

C′λπ(qn)ε(qn)
(qn).

Therefore, without loss of generality, we may assume that 0 < mn < π(qn).
It follows that mn → +∞ and π(qn) − mn → +∞ when n → +∞. Without
loss of generality we may assume (taking subsequences if necessary) that fmn(qn)
and fmn(yn) converges to x and y respectively. It follows that for all k ∈ ZZ
we have dist(fk(x), fk(y)) ≤ ε1. We know that x ∈ H(p). We claim that y also
belongs to H(p) which implies a contradiction on the account that ε1 is less than a
expansivity constant α. To prove our claim is enough to show that y is in the same
recurrent class of p since for our generic assumptions the recurrent class of p and
its homoclinic class coincide. Now, let ε be any positive number. Let n be such
that ε(qn) < ε. Then,

qn, f(yn), . . . fmn−1(yn), y, fmn+1(yn), . . . , fπ(qn)−1(yn), qn

is, for n large enough, a periodic ε-chain through y and having a point in H(p).
This implies that y belongs to the chain recurrent class of p and hence, since we
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are assuming f ∈ R, it is in H(p). This is a contradiction as we said above and
item a) is proved. Therefore x = y by the expansivity inside the class, and this is
a contradiction since dist(x, y) = ε as we said above. The item (a) is proved.

The proof of item (b) is a consequence of the fact that there is a finite number of
f -periodic points of bounded period on H(p) and that for q ∈ S, π(q) > N and
therefore we have Cλ′π(q)ε2 < 1

2ε2.
As we have said above, similar results hold for the center-unstable manifolds.

Taking into account Lemma 2.5 we see that for x ∈ S we have that the local
center stable and unstable manifolds are true stable and unstable ones. For any
point in the class we have the following.

Corollary 2.6. Let f ∈ R and H(p) be C1-robustly expansive. For all x ∈ H(p),
ε1 > 0 there exists ε2 > 0 such that for all n ≥ 0: fn(W cs

ε2 (x)) ⊂ W cs
ε1 (fn(x)).

Moreover, if y ∈ W cs
ε2 (x) ∩H(p) then dist(fn(x), fn(y)) → 0 as n →∞. Similarly

for the center-unstable manifolds.

Proof. The first part follows since the statement holds for periodic points homo-
clinically related to p and they are dense in H(p) and the continuity of W cs

ε (x)
with respect to x. The second part follows from the first one and using the ex-
pansivity inside the class. For, if it were not the case that dist(fn(x), fn(y)) → 0
when n → ∞, then there exist ρ > 0 and a subsequence nk → ∞ when k → ∞,
such that dist(fnk(x), fnk(y)) ≥ ρ. Since M is compact we may assume that
fnk(x) → z and fnk(y) → w and from dist(fnk(x), fnk(y)) ≥ ρ we obtain that
dist(z, w) ≥ ρ. Since H(p) is closed and f -invariant we have from x, y ∈ H(p) that
z, w ∈ H(p). On account of the first part of the Corollary if y ∈ W cs

ε2 (x) we have
that dist(fn(x), fn(y)) ≤ ε1 for all n ≥ 0. Therefore dist(f j(z), f j(w)) ≤ ε1 for all
j ∈ ZZ contradicting expansiveness of f/H(p).

Remark 2.7. Corollary 2.6 says that W cs
ε2 (x) ⊂ W s

ε1(x), that is, the local center
stable manifolds are stable ones in the sense that dist(fn(x), fn(y) ≤ ε1 for all
x ∈ H(p), y ∈ W cs

ε2 (x), n ≥ 0. Moreover, by Lemma 2.5, if x is a periodic point
then dist(fn(x), fn(y)) → 0 when n →∞. On the other hand, if x is not periodic
then we have dist(fn(x), fn(y)) → 0 when n → ∞ only if y ∈ H(p) ∩ W cs

ε2 (x).
In order to simplify notation we will assume that ε1 = ε2 = ε. This assumption
implies no loss of generality.

Lemma 2.8. Let f ∈ R and H(p) C1-robustly expansive. There exist positive ε
and δ such that if x, y ∈ H(p) and dist(x, y) < δ then ∅ 6= W cs

ε (x)∩W cu
ε (y) ∈ H(p).
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Proof. Notice that given ε > 0 there exists δ > 0 such that W cs
ε (x) ∩W cu

ε (y) 6= ∅
(and consists of a single point) whenever dist(x, y) < δ (this follows by transver-
sality of E and F ).

Assume first that x, y are periodic points and x ∼ p, y ∼ p, then choosing ε = ε2
as in Lemma 2.5 we know that W cs

ε (x) ⊂ W s
ε (x) and analogously W cu

ε (x) ⊂ W u
ε (x),

and similarly for y. As x, y are homoclinically related with p we also have, by the λ-
lemma, that W s

ε (x) is accumulated by W s(p) and W u
ε (x) is accumulated by W u(p).

Thus if z ∈ W s
ε (x) ∩W u

ε (y) then z ∈ H(p).
In the general case let x, y ∈ H(p) and take ε and δ > 0 as above. Take

sequences {xn} and {yn} of periodic points homoclinically related to p converging
to x and y respectively. As periodic points homoclinically related to p are dense
in H(p) (see [Sm1]) such sequences exist. Then W cs

ε (xn) converges to W cs
ε (x)

and W cu
ε (yn) converges to W cu

ε (x). As W cs
ε (xn) ∩ W cu

ε (yn) = {zn} we have that
zn → z ∈ W cs

ε (x) ∩ W cu
ε (y). As zn ∈ H(p) and H(p) is closed we conclude that

z ∈ H(p).

Definition 2.3. We say that a compact f-invariant set Λ has a local product
structure if given ε > 0 there exists δ > 0 such that if dist(x, y) < δ and x, y ∈ Λ
then

∅ 6= W s
ε (x) ∩W u

ε (y) ⊂ Λ

where W s
ε (x) := {y ∈ M : dist(fn(x), fn(y)) < ε for n ≥ 0} (analogously for W u

ε ).

From Corollary 2.6 (see also Remark 2.7) and Lemma 2.8 we have

Corollary 2.9. Let f ∈ R and H(p) be C1-robustly expansive. Then H(p) has a
local product structure.

Theorem 2.10. If f : Λ → Λ is an expansive homeomorphism of the compact
metric space (Λ,dist), then there exists a metric D on Λ defining the same topology
as dist in Λ, and numbers r > 0 and k > 1 such that

∀ x, y ∈ Λ : max{D(f(x), f(y)), D(f−1(x), f−1(y))} ≥ min{kD(x, y), r} .

Proof. See [Ft, Theorem 5.1].

Lemma 2.11. Let f ∈ R and H(p) C1-robustly expansive. Given η > 0 there
exists θ > 0 such that any θ-pseudo-orbit {xn} ⊂ H(p) is η-shadowed by an orbit
in H(p). Moreover, if θ, η are less than half the expansivity constant then the orbit
is unique (and periodic if the pseudo orbit is periodic).
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Proof. Let Λ be the homoclinic class H(p). Since f/H(p) is expansive there are
k > 1, r > 0 and D given by Theorem 2.10, where D is a metric on H(p) defining
the same topology as dist. Set λ = 1/k and shrink ε > 0 given by Lemma 2.8, if
it were necessary, in order to have dist(x, y) < ε =⇒ D(x, y) < λ2r = r/k2. Since
H(p) is compact and both metrics, D and dist, define the same topology such an
ε exists. We have that ∀ x, y ∈ H(p) : max{D(f(x), f(y)), D(f−1(x), f−1(y))} ≥
min{kD(x, y), r} . If y ∈ W s

ε (x) ∩ H(p) then min{kD(x, y), r} = kD(x, y) by the
choice of ε. If for y 6= x it were the case that D(f(x), f(y)) ≥ kD(x, y) then we
have D(f2(x), f2(y)) ≥ kD(f(x), f(y)) ≥ k2D(x, y), D(f3(x), f3(y)) ≥ k3D(x, y)
and so on till we have khD(x, y) ≥ r which would imply that dist(fh(x), fh(y)) > ε
contradicting that y ∈ W s

ε (x). Hence we have D(f−1(x), f−1(y)) ≥ kD(x, y) and
D(x, y) ≥ kD(f(x), f(y)) which is the same as D(f(x), f(y)) ≤ λD(x, y). By
induction we obtain D(fn(x), fn(y)) ≤ λnD(x, y) for all n ≥ 0. Similarly if y ∈
W u

ε (x) then D(f−n(x), f−n(y)) ≤ λnD(x, y) for all n ≥ 0. Using these inequalities
the proof of the lemma is similar to that given in [Bo, Proposition 3.6] taking into
account that by Lemma 2.9 there is a local product structure in H(p).

Remark 2.12. Perhaps it is worthwhile to note that the local stable manifold
W s

ε (x) = {y ∈ M : dist(fn(x), fn(y)) < ε, n ≥ 0} is defined with respect to the
original Riemannian distance dist. On the other hand it is not difficult to see that
there are c > 0 and ρ > 0 such that W s

c (x) ∩ H(p) ⊂ W s
ρ,D(x) = {y ∈ H(p) :

D(fn(x), fn(y)) < ρ, n ≥ 0} ⊂ W s
ε (x) ∩ H(p), and similarly with respect to the

unstable manifolds.

Proposition 2.13. Let f ∈ R and H(p) be C1-robustly expansive and let q ∈ H(p)
be a periodic point. Then we have that

1. W s(q) ∩W u(p) 6= ∅, W s(p) ∩W u(q) 6= ∅,
2. q is hyperbolic and index(p) = index(q),

Proof. By Lemma 2.9 we have that if x is sufficiently close to y then W s
ε (x) cuts

W u
ε (y) and W u

ε (x) cuts W s
ε (y). Since homoclinically related periodic points are

dense in H(p) we have a hyperbolic periodic point q1, homoclinically related to p
as close as we wish to q. Therefore W s

ε (q1) cuts W u
ε (q) and W u

ε (q1) cuts W s
ε (q). It

follows that dim(W s(q)) = dim(W s(q1)) = dim(W s(p)). By the λ-lemma, W u(p)
accumulates in W u

ε (q1) and W s(p) accumulates in W s
ε (q1). Thus, by domination,

W u(p) cuts W s
ε (q) and W s(p) cuts W u

ε (q).
By the generic assumptions given in 2.1 we have that q is hyperbolic. Hence

index(p) = index(q).

As a consequence of the previous proposition and Theorem 2.2 we have:
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Corollary 2.14. Let f ∈ R and H(p) be C1-robustly expansive. Then there exists
0 < µ < 1, L > 0 and m > 0 such that if q is a periodic point in H(p) of period
π(q) then

k−1∏

i=0

‖Dfm
/Es(f im(q))‖ < µk and

k−1∏

i=0

‖Df−m
/Eu(f−im(q)

‖ < µk

where k = [π(q)/m] > L .

Proof. By Proposition 2.13 all periodic points in H(p) are hyperbolic and homoclin-
ically related to p. Thus, by Theorem 2.2 we have

∏k−1
i=0 ‖Dfm

/Es(f im(q))
‖ < Cλk .

Choose 0 < µ < 1 such that µ
λ > 1 and find L > 0 such that for all k ≥ L

it holds Cλk < µk ⇐⇒ C <
(µ

λ

)k. Thus
∏k−1

i=0 ‖Dfm
/Es(f im(q))

‖ < µk . Similarly
∏k−1

i=0 ‖Df−m
/Eu(f−im(q)

‖ < µk.

Now, we shall conclude the proof of Theorem A, that is, let f ∈ R and H(p)
C1-robustly expansive and we will show that H(p) is hyperbolic. Let µ, L and m
as in Corollary 2.14, and take γ > 0 such that µ(1 + γ) < 1. It is not difficult to
prove that there exists ν > 0 such that if dist(x, y) ≤ ν, x, y ∈ H(p) then

1− γ ≤
‖Dfm

/E(x)‖
‖Dfm

/E(y)‖
≤ 1 + γ.

For any 0 < η ≤ ν consider θ = θ(η) from lemma 2.11. We may assume that η and
θ are smaller than the expansivity constant of f.

To prove that H(p) is hyperbolic it is enough to prove that ‖Dfn
/E(x)‖ → 0 as

n → ∞ and ‖Df−n
/F (x)‖ → 0 as n → ∞ for any x ∈ H(p). Let us show only that

‖Dfn
/E(x)‖ → 0 as n → ∞, the other one being similar. For this, it is enough to

show that for some m and any x ∈ H(p) there exists k̃ such that for any x there
exists 0 < k = k(x) ≤ k̃ such that

k∏

i=0

‖Dfm
/E(f im(x))‖ <

1
2
.

Arguing by contradiction, assume this does not hold. Then, there exist sequences
xn ∈ H(p) and kn →∞ such that

k∏

i=0

‖Dfm
/E(f im(xn))‖ ≥

1
2
, 0 ≤ k ≤ kn.
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Let z be an accumulation point of xn. It follows that

k∏

i=0

‖Dfm
/E(f im(z))‖ ≥

1
2
∀k ≥ 0.

Observe that the above property implies that z cannot be a periodic point since all
of them are hyperbolic. Let w be an accumulation point of the sequence f im(z), i.
e., there exists ik → ∞ such that f ikm(z) → w. Since fπ(p)/H(p) is topologically
mixing, see [Me], there exist z1 ∈ H(p) and n0 such that dist(z1, w) < θ/2 and
dist(fn0m(z1), z) < θ, where n0 is a multiple of π(p).

Let K = inf{‖Dfm
/E(x)‖ : x ∈ H(p)} and take j0 such that

((1 + γ)µ)j+n0 <
1
2
Kn0 ∀j ≥ j0.

Finally, choose ik > j0 such that dist(f ikm(z), w) < θ/2. Consider now the θ-
periodic-pseudo-orbit defined by {z, ..., f ikm(z), z1, ....., f

n0m(z1), z}. By lemma 2.11
there exists a periodic point q that η-shadows the pseudo orbit and (ik +n0)m is (a
multiple of) π(q). Moreover π(q) is larger than L if η is small enough: otherwise, we
would get, by taking a sequence ηn → 0 (and hence θ(ηn) → 0), that z is periodic.
Therefore

1
2
Kn0 ≤

ik−1∏

i=0

‖Dfm
/E(f im(z))‖

n0−1∏

i=0

‖Dfm
/E(f im(z1))‖

≤
ik+n0−1∏

i=0

(1 + γ)‖Dfm
/Es(f im(q))‖

≤ ((1 + γ)µ)ik+n0 <
1
2
Kn0 ,

a contradiction. This completes the proof of Theorem A.
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