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Abstract. We give here the first examples of C1 structurally stable maps
in manifolds of dimension greater than one that are not diffeomorphisms nor
expanding. It is shown that an Axiom A endomorphism all of whose basic

pieces are expanding or attracting is C1 stable. A necessary condition for the
existence of such examples is also given.

1. Introduction

The problem of stability is central in dynamical systems. As the models appear-
ing in factual sciences cannot reflect exactly the reality, it is important to decide
wether a given model can be slightly perturbed without changing its qualitative be-
haviour. Two nearby systems are said equivalent if one of them is equal to the other
if when a change of coordinates is performed. In our context, a discrete dynamical
system will be a C1 map of a compact manifold M . An equivalence between f
and g is a homeomorphism h of M such that hf = gh. A map f ∈ C1(M) is C1

structurally stable, or simply C1 stable, if there exists a neighborhood U of f in
C1(M) such that f and g are topologically equivalent for every g ∈ U .
For invertible self maps of compact manifolds, the characterization of C1 stability
was obtained by Robinson ([Rob]) and Mañé ([Ma]). Some years before that, it
was shown by Shub ([Sh]) that an expanding map is Cr stable. Since then, no
new examples of C1 stable maps in manifolds of dimension greater than one were
discovered.

It is already known that if M is a compact manifold then the following conditions
are necessary for a map f ∈ C1(M) to be C1 structurally stable:

(1) The set of critical points of f is empty.
(2) The map f is Axiom A without cycles.
(3) If the unstable set of a basic piece Λ intersects another basic piece, then Λ

is an expanding basic piece.

Note that this already contrasts with the chronology of discoverings for diffeo-
morphisms: in this latter case, sufficient conditions (namely, Axiom A + strong
transversality) for C1 structural stability were obtained by C.Robinson (1976). It
was conjectured by Palis and Smale that these conditions were also necessary for
C1 stability. R.Mañé obtained a proof of this central conjecture in 1987. In the case
of noninvertible maps, it is already known that the hyperbolicity is necessary for
stability, but no set of sufficient conditions were established until now: no nonex-
panding examples were known . Looking for a characterization of C1 stable maps,
our main interest here is to provide sufficient conditions and analize examples of
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C1 stable maps.
Now we comment briefly the necessary conditions stated above. The first item is
obvious since it concerns with C1 maps. It follows that f is locally invertible and so
a covering map. There exist examples of maps (in manifolds of dimension greater
than one) having critical points that are Cr structurally stable (r > 1) and have
nontrivial nonwandering sets, see [IPR1] and [IPR2].
The proof of the second item was given by Aoki, Moriyasu and Sumi in [AMS],
adapting the proof of the C1 stability conjecture given by Mañé ([Ma]). Adopting
the definition of [MP], the meaning of Axiom A is the following: a map f satis-
fies the Axiom A if the nonwandering set of f is hyperbolic, the set of periodic
points of f is dense in the nonwandering set and the restriction of f to Λ is injec-
tive whenever Λ is a basic piece that is not expanding. Actually, the C1 Ω-stable
maps without nonwandering critical points were already characterized: Przytycki
showed that items (1) and (2) above imply that f is C1 Ω-stable ([Prz]) and the
above mentioned theorem of [AMS] implies that the second condition is necessary
for Ω-stability when the map is critical points free. When the set of critical points
intersects the nonwandering set, some conditions were shown to be sufficient for C1

Ω-stability in [DRRV], but a full characterization was not already established.
The third item was also proved by Przytycki in [Prz].

In Przytycki’s above mentioned article, there is an example of an Ω-stable map
that satisfies the three items above; it was asked if this example is structurally
stable or not. As far as we know, this question remained unsolved since then. It is
our pourpose to show that his example is C1 structurally stable in a forthcoming
article. The nonwandering set of Przytycki’s map is the union of an attracting fixed
point, a saddle type basic piece and an expanding set. The main difficulty to prove
the stability is that one has to deal with self-intersections of the unstable manifolds
of the saddle type basic piece.
In this work, we find examples without basic pieces of the saddle type. More
precisely, given an Axiom A map f denote by Γ(f) the union of the basic pieces of
f that are not expanding nor attracting (repelling sets that are not expanding are
contained in Γ).

Theorem 1. Let M be a compact manifold. If F ∈ C1(M) is an Axiom A map

without critical points and Γ(F ) = ∅, then F is C1 structurally stable.

We knew how to prove similar assertions some time ago, the ideas are contained
in results previously obtained in [IP], [IPR1] and [IPR2]. What we didn’t knew
were examples of maps verifying its hypothesis; the discovery of simple examples
in odd dimensions greater than two motivated us to write the present work.

Theorem 2. Let M be a manifold admitting an expanding map. Assume that there

exists an embedding of M into some sphere S. Then there exists a noninvertible

Axiom A map F in C1(M×S) whose nonwandering set is the union of an expanding

set and a nonperiodic attractor. It follows that F is C1 structurally stable.

For example, if M is the torus Tn and S is the sphere Sn+1, then the hypothesis
above are satisfied. However, as our next result asserts, it is not frequent to find
examples of maps satisfying the above sufficient conditions of stability. A neigh-
borhood U of an attractor Λ of a map f is said admissible if it is contained in the
basin of attraction of Λ, the closure of f(U) is contained in U and the restriction
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of f to U is injective. The attractor Λ is said topologically simple if there exists an
admissible neighborhood U of Λ such that every curve in U is homotopic to a curve
in f(U) with the homotopy contained in U . For example, a periodic attractor and
a DA attractor are topologically simple, a solenoid is not.

Theorem 3. Let M be a compact manifold and f ∈ C1(M) a nonivertible map.

Assume in addition that f is an Axiom A map without critical points, that has a

topologically simple attractor. Then Γ(f) is not empty.

The attractors appearing in the examples of Theorem 2 are generalized solenoids.
We find relevant to the development of the theory the possible discovery of examples
of other type, or the classification of maps satisfying the condition Γ(f) = ∅.
It seems that in dimension two every attractor is topologically simple. Thus there
would not exist maps satisfying the hypothesis of theorem 1 in dimension two.
Many colleagues, visitants or stable participants of our seminar, participated in
different parts of this work. We want specially thank to Pablo Lessa, Rafael Potrie,
Alfonso Artigue and Peter Haissinski.

2. Sufficient conditions for stability.

In this section we prove theorem 1. The proof of this theorem is inspired in
that of theorem C given in [IPR2]. In that result, there were critical points in the
basin of the attractor but it was assumed that the nonwandering set of the map
was completely invariant, that is not the case here.
The map F is C1 Ω-stable: as was explained in the introduction, it is sufficient
to prove that F is critical points free and Axiom A without cycles. The no cycles
condition is a trivial consequence of the nature of the basic pieces; indeed, cycles
between expanding sets are transverse because there are no critical points and so
it must be contained in the nonwandering set.
There exists a C1 neighborhood U of F such that for every G ∈ U one can define
A(G) as the union of the attracting basic pieces of G, B(G) as the union of the
basins of elements of A(G) and J(G) as the union of the expanding basic pieces
of G with all its preimages. It follows that J(G) ∪ B(G) = M . Moreover, the
restrictions F|Ω(F ) and G|Ω(G) are conjugated by a conjugacy close to the identity.
For a map F satisfying the hypothesis of theorem 1, it is not necessarily true that
F−1(Ω(F )) is equal to Ω(F ) (see figure 1 below), and so J(F ) is not necessarily
contained in the nonwandering set of F . However, it holds that J(F ) is always
an expanding set: there exist constants C > 0 and λ > 1 such that ||DFn

x (v)|| ≥
Cλn||v|| for every vector v, n > 0 and x ∈ J(F ).

Lemma 1. J(F ) is an expanding set.

Proof. Note that J(F ) is compact because it is the complement of B(F ). The
future orbit of any point x ∈ J(F ) eventually lands on an expanding basic piece;
this implies that limn→+∞ ||DFn

x (v)|| = +∞. A standard argument, that we repeat
here, implies the assertion of the lemma. Denote by SJ the set of pairs (x, v), where
x ∈ J(F ) and v is a unit vector tangent to M at x.
Claim. There exists N > 0 such that, for any (x, v) ∈ SJ , there exists an n ≤ N
such that ||DFn

x (v)|| ≥ 2.
We prove the claim by contradiction: assume that for every N there exists (xN , vN )
such that ||DF j

xN
(vN )|| < 2 for every 0 ≤ j ≤ N . Passing to a subsequence, suppose
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Figure 1.

p

F is an Axiom A map of S1. The basic pieces are: two attracting fixed points, a fixed

repeller p and a expanding Cantor set. F−1(p) is not contained in Ω(F ) .

that (xN , vN ) converges to an (x, v) ∈ SJ . Given any m > 0, note that

||DFm
x (v)|| = lim

N
||DFm

xN
(vN )|| ≤ 2,

which contradicts the fact that the limit of ||DFm
x (v)|| is ∞.

Given (x, v) ∈ SJ , define n(x, v) as the maximum n ≤ N such that the assertion
of the claim holds, that is, ||DFn

x (v)|| ≥ 2.
Now let λ = 21/N and let C > 0 be the minimum of the norms ||DF j

x(v)|| for
(x, v) ∈ SJ and 0 ≤ j ≤ N . Let xn = Fn(x) and vn = DFn

x (v). By the claim,
there exists numbers ni, 0 ≤ i ≤ k such that 0 = n0 < n1 < · · · < nk ≤ n and
ni+1 is defined by induction by ni+1 − ni = n(xni

,
vni

||vni
|| ). Clearly, ni+1 − ni ≤ N ,

n − nk ≤ N and

||vni+1
||

||vni
||

= ||DFni+1−ni

xi
(vni

/||vni
||)|| ≥ 2,

by definition of ni. Finally, note that

||vn|| =

[

k−1
∏

i=0

||vni+1
||

||vni
||

]

.
||vn||

||vnk
||
≥ C.2k ≥ (C/2).λn,

because k ≥ n
N − 1. �

It is a well known fact that hyperbolic attractors are stable. As the restriction
of F to a neighborhood of A(F ) is a diffeomorphism onto its image, there exists a
conjugacy h between the restrictions of F and G to neighborhoods U(F ) of A(F )
and U(G) of A(G). Moreover, the conjugacy can be taken as close to the identity
as wished by diminishing the neighborhood U of F .

Denote by h the conjugacy between F and G referred above. The first step
of the proof consists in extending h to B(F ). This would be trivial if f were
a diffeomorphism. For let x be a point in F−k(U(F )); to define h(x) one has
to choose a Gk-preimage of h(F (x)), and there are a lot of them. However, our
arguments will imply that there exists one of these preimages that is closest to x.
This is easy to prove for a finite number of preimages, but at each step, one should
be forced to diminish the neighborhood of F . Hence a different argument must be
applied when the preimages taken are sufficiently close to an expanding set. Next
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lemma 2 will provide the precise estimates, and corollary 1 will explain the order
of choices of neighborhoods and constants. The second step of the proof consists
in extending h to the complement J(F ) of B(F ).
Some definitions and notations are in order before proceeding to the statement of
the main lemma. Define Uk(F ) = F−k(U(F )). Let d denote the distance in M , and
B(x; r) be the ball of center x and radius r. As the maps have no critical points
and the manifold M is compact, there exists ǫ0 > 0 such that G(x) = G(y) implies
x = y or d(x, y) > ǫ0 whenever G ∈ U . If W is a subset of M and δ is a positive
real number, denote by Nδ(W ) the set of homeomorphisms h : W → h(W ) ⊂ M
that are δ close to the identity of W . If, moreover, h conjugates corresponding
restrictions of F and G, then we write h ∈ Nδ(W ;G).

Lemma 2. (1) Let ρ be a positive constant less than or equal to ǫ0/2. Then there

exist δ = δ(ρ) > 0 and a neighborhood U = U(ρ) of F such that, if W is any

subset of M and h belongs to Nδ(W ;G) for some G ∈ U , then there exists a unique

extension h′ of h in Nρ(W ∪ F−1(W );G).
(2) There exist a positive number δ0, and a neighborhood V of J(F ) such that the

following property holds:

Given any δ < δ0 there exists a neighborhood U of F such that, given any W ⊂ V ,

any G ∈ U and any h ∈ Nδ(W ;G), there exists a unique extension h′ of h in

Nδ(W ∪ F−1(W );G).

Proof. (1) Let x ∈ F−1(W ), one has to prove that there exists a unique x′ ∈ B(x; ρ)
such that G(x′) = h(F (x)).
Note that given any ρ > 0 there exists a neighborhood U of F and a positive number
δ such that, for every G in U and x ∈ M it holds that:

(1) G(B(x; ρ)) ⊃ B(G(x); 2δ)

Note also that if ρ > 0 is less than ǫ0/2, then G|B(x;ρ) is a homeomorphism onto
its image.
To prove part (1) it suffices to show that h(F (x)) ∈ B(G(x); 2δ). But

d(h(F (x)), G(x)) ≤ d(h(F (x)), F (x)) + d(F (x), G(x)) ≤ 2δ,

if the C0 distance between F and G is less than δ. This defines h in F−1(W ); it
is a homeomorphism since it is open by definition (locally h = G−1hF ). Moreover
h(x) = h(y) implies h(F (x)) = h(F (y)), hence F (x) = F (y) and so x = y because
h is close to the identity.
(2) If U is a small neighborhood of F and V is a small neighborhood of J(F ), then
lemma 1 implies that there exists a number λ > 1 and an adapted metric in M such
that DGx λ-expands any direction, for any x ∈ V and G ∈ U . Using part (1), let
δ0 = δ(ǫ0/2). Now, if δ < δ0, and if for some G ∈ U(ρ) one has an h ∈ Nδ(W ;G),
then there is an extension h′ of h to F−1(W ) that still conjugates F and G. It
must be shown that the extension remains in the δ0 neighborhood of the identity.
Indeed, if F (x) ∈ W , and h(x) = x′, then d(F (x), F (x′)) ≥ λd(x, x′). Moreover,

d(F (x), F (x′)) ≤ d(F (x), G(x′)) + d(G(x′), F (x′)) ≤ δ0 + d0,

where d0 is the C0 distance between F and G. Taking U small so that d0 < (λ−1)δ0,
it follows that d(x, x′) < δ. �

By part one of the lemma, it follows that one can extend h to U1(F ) if the
neighborhood U is diminished once. Therefore this proceeding can be repeated
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a finite number of times, which is not enough to cover B(F ). The second part
of the previous lemma then implies that the proceeding of taking preimages will
provide an extension of h to the whole B(F ), because the complement of B(F ) is
an expanding set.

It follows that there exist neighborhoods V of J(F ) and U of F , and a positive
constant λ > 1, such that for an adapted metric, it holds that DGx expands vectors
at a rate at least λ for any x ∈ V and every G ∈ U . Note that the neighborhood V
of J(F ) can be taken backward invariant for every G ∈ U .

Corollary 1. Given any δ > 0 there exists a neighborhood U of F such that for

every G ∈ U the set Nδ(B(F );G) is not empty.

Proof. Fix an admissible neighborhood U(F ) of A(F ). Then choose neighborhoods
V of J(F ) and U of F such that every G ∈ U is λ-expanding in V . By lemma 1
there exists a positive integer k such that V ∪Uk(F ) = M . Diminishing U one can
obtain, for some fixed G ∈ U , an h ∈ Nρ(U(F ), G) in such a way that repeatedly
applying part (1) of lemma 2, there exists an extension of h in Nδ(Uk(F );G), again
denoted by h. Now, as V is backward invariant, the fundamental neighborhood
Uk+1(F ) \ Uk(F ) is contained in V , so part (2) of lemma 2 gives an extension of h
to Uk+1(F ), and this extension remains in the δ neighborhood of the identity. By
induction the homeomorphism h is extended to ∪n>0Un(F ) = B(F ) to a conjugacy
between F|B(F ) and G|B(G) that is δ close to the identity in B(F ). �

It remains to prove the second part of the theorem, that consists in extending h
to the whole manifold.
Let ǫ be a constant of expansivity of the restriction of F to J(F ), that is, for every
z 6= w in J(F ), there exists N ≥ 0 such that d(FN (z), FN (w)) > ǫ. For every G in
a neighborhood of F the same ǫ is a constant of expansivity for the restriction of
G to J(G).
By corollary 1, one can choose U such that the distance between the identity and h
is less than ǫ/2, where h : B(F ) → B(G) is a conjugacy between F and some fixed
G ∈ U . Let x ∈ ∂B(F ) and {xn} a sequence in B(F ) that converges to x. We claim
that the sequence {h(xn)} converges. Otherwise, one can choose accumulation
points z 6= y of the set {h(xn)}. By the choice of ǫ there exists N ≥ 0 such that
d(GN (y), GN (z)) > ǫ. Then the sequence {hFN (xn) : n > 0} accumulates at
GN (y) and GN (z), but as {FN (xn)} converges to FN (x), a contradiction appears
because h is ǫ/2 close to the identity. This proves the claim. Define h in the
boundary of B(F ) as the limit of {h(xn)}. The claim implies that h is continuous
and surjective. Finally h is injective because two points z and w with the same
image would verify that d(Fn(z), Fn(w)) eventually becomes greater than ǫ, while
h(Fn(z)) = h(Fn(w)) for every n > 0. This extends h to the closure of B(F ) that
equals the whole manifold unless J(F ) has nonempty interior, in which case the
map is expanding and the stability already established by Shub.

3. Existence of examples

This section is devoted to the proof of Theorem 2. Let T be an expanding
map of degree greater than one on a manifold M and assume that there exists an
embedding J from M into Sn. Consider Sn as the one point compactification of
R

n and assume that JM is contained in the ball B(0; 1). To simplify notation we
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will also assume that J is the inclusion. Let α > 0 be such that T (x) = T (y)
implies x = y or |x − y| > α, where |.| is the Euclidean norm in R

n. For each
z ∈ M let fz : R

n → R
n given by fz(w) = aw + (1 − a)z, where a < 1 is a positive

real number to be chosen. Note that fz can be extended to a diffeomorphism of
Sn having an attracting fixed point at z and a repelling fixed point at ∞. Define
F : M × Sn → M × Sn by F (z, w) = (T (z), fz(w)). Note that F is a locally
invertible map with the same degree and class of differentiability as T .

We make the following choices: if a < α
α+2 , then (1−a)α

2a > 1; take a number

r ∈ (1, (1−a)α
2a ), and define U = M × B(0; r).

Claim 1. The closure of F (U) is contained in U .
Note that fz(B(0; r)) is equal to the ball B((1−a)z; ar), whose closure is contained
in B(0; r), because r > 1 implies that (1 − a)|z| + ar ≤ (1 − a) + ar < r. This
implies the claim.
Claim 2. The restriction of F to U is injective.
Assume that F (z, w) = F (z1, w1) with z 6= z1, |w| < r and |w1| < r. This
implies that Tz = Tz1, so |z − z1| > α. Moreover, fz(w) = fz1

(w1) implies that
aw + (1 − a)z = aw1 + (1 − a)z1. But this is impossible because

|a(w − w1) + (1 − a)(z − z1)| ≥ (1 − a)α − 2ar > 0

by the choice of r.
Claim 3. The intersection Λ of the future iterates of U is a transitive hyperbolic
attractor.
This part of the construction is a trivial generalization of the solenoid attractor:
the solenoid is obtained when M is the circle S1, T (z) = z2 and n = 2. Consider
the inverse limit of T , that is, the set Σ of sequences z = {z(m) : m ≥ 0} such that
T (z(m)) = z(m−1) for every m > 1, and endow it with the product topology. Given
z ∈ M let Uz = {z} × B(0; r). If z = {zm} ∈ Σ, note that the sequence Fn(Uz(m))
is a decreasing sequence of relatively compact sets whose diameters converge to 0,
which implies that its closures intersect in a unique point, denoted i(z(0)). It is
then easily seen that i : Σ → Λ is a homeomorphism realizing a conjugacy between
the restriction of F to Λ and the shift σ given by σ(z)(m) = T (z(m)).
Claim 4. The basin of attraction of Λ is equal to M × Sn \ M × {∞}.
Note that |fz(w)| ≤ a|w| + (1 − a), but the function x ∈ R → ax + (1 − a) ∈ R

has a fixed attractor at x = 1 that attracts every x > 1. It follows that for any
w ∈ Sn \ {∞} such that |w| > 1, there exists a positive k such that F k(z, w) ∈ U .
Claim 5. F is Axiom A with Γ(F ) = ∅.
Note that M × {∞} is an expanding basic piece. It follows that the nonwandering
set of F is the union of Λ with this expanding set. By claim 2, the restriction of F
to Λ is injective. The claim and the theorem are proved.

4. Proof of Theorem 3

We give first a short description of the proof. The hypothesis on the attractor
implies that the restriction of f to the immediate basin is injective. Next it is
assumed that Γ(f) is empty to obtain, applying lemma 1, that the boundary of
the immediate basin is contained in an expanding set. There exists an admissible
neighborhood N of the attractor Λ having a smooth boundary. If ∂Nk denotes
the boundary of the intersection of f−kN with the immediate basin, then ∂Nk

must converge to the boundary of the immediate basin. On the other hand, the
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Lebesgue measure of ∂Nk converges exponentially to zero since it is contained in
a neighborhood of an expanding set. This is a contradiction: it implies that the
boundary of the immediate basin was a finite set of points, and hence the map was
a diffeomorphism.

Let Λ be a topologically simple attractor of a noninvertible Axiom A map f .
The immediate basin of Λ, denoted by B0 = B0(Λ), is the union of the connected
components of the basin that intersect Λ. Taking an iterate of f one can assume
that the immediate basin is connected and satisfies f(B0) = B0.

Let U be an admissible neighborhood of Λ such that every closed curve in U is
homotopic to a closed curve in f(U), with the homotopy contained in U . Define
by induction an increasing sequence of open sets as follows: let U0 = U and Un be
the connected component of f−1(Un−1) that contains Un−1. The first four claims
give the proof that f is injective in B0.
Claim 1. The restriction of f to Un is a covering map.
The restriction is locally injective because f has no critical points. To prove that
it is a covering map it suffices to show that it is proper. Let {xk} be a sequence
in Un converging to a point x /∈ Un. The sequence {f(xk)} converges to a point y
in the closure of Un−1. We have to prove that y /∈ Un−1. If y ∈ Un−1, then there
exists a ball B centered at x such that f(B) ⊂ Un−1 which is absurd since Un ∪ B
is a connected set whose image is contained in Un−1 and strictly contains Un.
Claim 2. Every closed curve in Un is homotopic to a closed curve contained in
Un−1.
Indeed, given a closed curve γ contained in Un let γ′ be a closed curve in f(U0)
that is homotopic to fn(γ). This implies that the fn-lift of γ′ is a closed curve
contained in Un−1 and homotopic to γ.

Claim 3. There exists a map g defined in Ũ = ∪Un such that g(f(x)) = x.
Define g : f(U0) → U0 as the inverse of f|U0

. Assume g was extended until Un−1

and take any x ∈ Un. If γi, i = 1, 2 are curves in Un joining a point in Λ with x,
then γ1γ

−1
2 is a closed curve in Un that has a homotopic curve γ′ in Un−1. As γ′

has a closed lift under f , namely g(γ′), it follows that the f -lift of γ1γ
−1
2 is closed.

Therefore the f -lifts of γ1 and γ2 have the same final point x′, which must be sent
to x by f . This allows us to define g(x) = x′, thus extending g to a diffeomorphism
from Un with the property f(g(x)) = x. Note also that g(Un) = Un+1.
Claim 4. The restriction of f to B0(Λ) is injective.

The above claim implies that f is injective on Ũ . It remains to show that Ũ =
B0(Λ). Indeed, let x ∈ B0(Λ) and let α be a curve in B0(Λ) joining x with a
point in Λ. There exists K > 0 such that fK(α) ⊂ U0, but as UK is the connected
component of f−K(U0) that contains U0, we conclude that α ⊂ UK , whence x ∈ UK .

From now on it is assumed, by contradiction, that Γ(f) = ∅. This implies by
lemma 1 that the complement of B(F ), the union of the basins of the attractors,
is an expanding set.
Claim 5. There exists a neighborhood N of Λ such that the following properties
hold:

(1) N is an admissible nieghborhood of Λ.
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(2) The boundary of N is a finite union of connected submanifolds of codimen-
sion one.

Given an admissible neighborhood U , one can obtain a new admissible neighbor-
hood contained in U which consists of a finite union of balls. A small perturbation
of this neighborhood would be also an admissible neighborhood with smooth bound-
ary. This proves the claim.

For k > 0, let Nk denote the preimage of N under (f|B0)k. Given a neighborhood

V of the boundary of B0, there exists k0 such that the boundary of Nk is contained
in V for every k > k0. If the neighborhood V of the boundary of B0 is small, then
f is expanding in V . It follows that the boundary of Nk converges with n to a
finite union of single points. But this implies that the map f is a diffeomorphism,
a contradiction.
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