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Abstract. The perturbations of complex polynomials of one variable are con-

sidered in a wider class than the holomorphic one. It is proved that under

certain conditions on a polynomial p of the plane, the Cr conjugacy class of

a map f in a C1 neighborhood of p depends only on the geometric structure

of the critical set of f . This provides the first class of examples of structurally

stable maps with critical points and nontrivial nonwandering set in dimension

greater than one.

RÉSUMÉ. Nous considérons les perturbations des polynômes complexes en une

variable dans une classe plus vaste que la classe holomorphe. Si f est une
application appartenant à un voisinage C1 d’un polynôme p du plan, nous
prouvons, sous certaines conditions sur p, que la classe de conjugaison Cr de f

ne dépend que de la structure géométrique du lieu critique de f . Ceci fournit
la première classe d’exemples, en dimension supérieure à une, d’applications
structurellement stables ayant des points critiques et un ensemble non-errant
non trivial.
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1. Introduction

Given a manifold without boundary M , denote by Cr
W (M) the set of Cr endo-

morphisms of M , considered with the strong (or Whitney) topology. The set of
critical points of f ∈ Cr

W (M) is denoted by Sf . Two maps f and g are topologically
equivalent if there exists a homeomorphism h such that hf = gh. The problem
of determining the classes of topological equivalence is central in the theory of dy-
namical systems. In particular, a great effort has been made to classify those maps
that are topologically equivalent to its neighbors. If C is a topological space of self
mappings, then f is C- structurally stable if there exists a neighborhood of f such
that every g in that neighborhood is topologically equivalent to f . Obviously, the
concept depends on the space and topology under consideration.
The examples of structurally stable maps on manifolds without boundary that are
already known are the following:

(1) A C1 diffeomorphism of a compact manifold is C1 structurally stable if
and only if it satisfies Axiom A and the strong transversality condition.
This theorem is the result of the work of many authors, from the sixties
to the nineties. The “only if” part is due to C.Robinson [R] and the other
direction was obtained by R.Mañé [Ma], fifteen years later.
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It is still not known if there exist Cr structurally stable diffeomorphisms
that are not C1 structurally stable.

(2) Any Cr expanding map of a compact manifold is Cr structurally stable.
This was proved by M.Shub [S] in the sixties.

(3) In the case of one dimensional maps of the circle there are some possible
combinations giving conditions for structural stability.
The same occurs for rational maps of the Riemann sphere. This case will
be specially considered in the sequel. For example a polynomial map of
degree d is stable in the d dimensional space of parameters corresponding
to its coefficients, if p is hyperbolic and satisfies the no critical relations
property: pn(S′

p) ∩ p
m(S′

p) = ∅ for every 0 ≤ n < m, where S′
p is the set of

finite critical points of p. It is not known, however, if the converse of this
assertion is true.

Therefore there are no examples of noninvertible nonexpanding structurally sta-
ble maps with or without critical points, in dimensions greater than one. In the
attempt to construct the simplest possible examples, we consider C1

W (C) neighbor-
hoods of polynomials and look for Cr

W (C) stable maps there. The theorem of Mañé,
Sad and Sullivan of stability of rational mappings [MSS], implies the statement(3)
above and also that within the family of degree d polynomials, the stable ones are
dense.
It will be clear later that no polynomial can be Cr

W (C) structurally stable, because
the critical points of holomorphic maps are nongeneric in those spaces of smooth
maps. Indeed, let f and g be topologically equivalent (also called conjugate) and
h the conjugacy between them, i.e. the homeomorphism such that hf = gh; then
h carries generic critical points of f to critical points of g and critical values of f
to critical values of g. Therefore, some geometric conditions must be imposed on
the critical sets of maps f and g in order to obtain the existence of a conjugacy
between them. The concept that will be used is the following:

Definition 1. Two maps f and g are geometrically equivalent if there exist orien-
tation preserving C1 diffeomorphisms of M , ϕ and ψ, such that ϕf = gψ.
If for some positive α, the map ψ is α close to the identity in C0 topology, then the
maps f and g are said α-geometrically equivalent.

This concept, introduced by R.Thom, is now a central concept in global analysis.
It is a concept of geometric nature: it implies, for example, that the set of (generic)
critical points and critical values of f and g are diffeomorphic and that the degree
of the maps are the same. However, it has no dynamical meaning: for example,
two quadratic polynomials of the sphere are always geometrically equivalent. The
concept of geometric equivalence has no significance relative to future iterates of the
map: the fact that two maps f and g are equivalent in this sense does not imply that
their iterates f2 and g2 are also equivalent. It is clear, on the other hand, that if two
maps are topologically equivalent, then the homeomorphism realizing the conjugacy
carries information about the local behavior of the maps; therefore, under generic
conditions, topological equivalence implies geometric equivalence. The aim now is
to establish conditions implying the converse statement.
Note that if a polynomial p satisfies the no critical relations property (item (3)
above) then no (finite) critical point of p is periodic or preperiodic.
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The main result in this work is the following; after its proof, in the last section,
some other more general statements will be discussed.

Theorem 1. Let p be a polynomial that satisfies the no critical relations property.
The following conditions are equivalent:

(1) The Julia set of p is connected and hyperbolic.
(2) There exists a neighborhood U of p in C1

W (C), and α > 0 such that, if two
maps belonging to U are α-geometrically equivalent, then they are topologi-
cally equivalent.

The implication (1) ⇒ (2) is the most difficult part of the statement. It contains
the proof that, under certain conditions on the polynomial p, it suffices to prove
that the sets of critical points and values of two maps C1 close to p have the same
geometry, to obtain that the maps are equivalent from the dynamical point of view.
The reason why α-geometric equivalence is needed is explained in an example in
section 3: it may happen that the diffeomorphism ψ is identifying components of
Sf and Sg that are not close to each other.
The dynamical structure of a polynomial p satisfying the hypothesis (1) of the theo-
rem is well known. Recall that the Julia set is connected if and only if every critical
point (other than ∞) has bounded orbit. The hyperbolicity of p is equivalent to the
fact that every critical point is attracted to a periodic attractor or superattractor,
and the hypothesis of no critical relations implies that there are no finite superat-
tractors. Within this context the polynomial is stable under small perturbations of
its coefficients. The proof of this fact is based on the construction of conjugacies
in the Fatou components of p, that come from the holomorphic local conjugacies
at the periodic points (see the theorems of Schröder and Böttcher in the references
[St], [Mi]). Then these conjugacies are glued together via the application of the λ
lemma [MSS]. When the perturbation is taken in the C1 Whitney topology, then
non holomorphic maps arise, including some with wild critical sets. All the above
techniques rely on the conformal structure of the maps in question and therefore
cannot be in general applied in this wider context. To deal with the structure of
the nonwandering set one has a basic result, a theorem by F.Przytycki ([P]), that
implies that under the hypothesis (1), the polynomial p is C1 Ω-stable. This means
that for a small C1 perturbation f of p the restrictions of f and p to respective
nonwandering sets are topologically equivalent. This theorem is used in section
2 to prove that the complement of the nonwandering set of f is the union of the
basins of the periodic attractors of f . This is a fundamental step in the proof.
In particular, every component of the complement of the nonwandering set of f is
periodic or preperiodic. This extends Sullivan’s theorem of nonexistence of wan-
dering Fatou components, to Whitney C1 perturbations of hyperbolic polynomials.
It justifies, moreover, the denomination of Fatou component of f for a component
of the complement of the nonwandering set of f , and also the concept of analytic
continuation for Fatou components.
Some work is needed to prove that geometrically equivalent maps f and g are
conjugate when restricted to corresponding Fatou components. The proof of this
and that these conjugacies extend to the whole plane deserve section 3. As a con-
sequence of this part of the theorem the first examples of C3-structurally stable
maps having critical points are shown:
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Corollary 1. Let p be a hyperbolic polynomial map having connected Julia set.
In each neighborhood U of p in C∞

W (C) there exists some f that is C3 structurally
stable.

The proof also implies the existence of C3 structurally stable maps in C3(S2)
with uniform topology, see final section. It will become clear in subsequent sections
that no polynomial can be C1 approximated by a C2 structurally stable map. See
remark 1 in section 4.
For the proof of the converse ((2) ⇒ (1)): to prove hyperbolicity it will be shown
that if a critical point of p belongs to the Julia set of p, then there exists a C1

perturbation of p that is geometrically but not topologically equivalent to it. Less
evident is the fact that the Julia set of p must be connected in order to obtain
the properties stated in part (2). See section 4. See the remarks at the end of the
article concerning some questions about the problem of stability.

2. Whitney perturbations of p

In this section a polynomial p satisfying the hypothesis (1) of theorem 1 is fixed
and f is a small C1 Whitney perturbation of p. The objective is to show that the
picture of the dynamics of f is the same as that of p. The following properties are
satisfied by a polynomial p verifying the hypothesis (1) of theorem 1:

(1) The point ∞ is an attractor. The basin of ∞, B∞(p), is connected and
simply connected.

(2) Its boundary, ∂B∞(p), is a curve (not necessarily a Jordan curve), and is
equal to Ω′(p), the set of nonwandering points of p that are not periodic
attractors. (Clearly Ω′(p) is the Julia set of p, also denoted Jp).

(3) Every component of the complement of the closure of B∞(p) is simply
connected and its boundary is a Jordan curve.

(4) The components of the Fatou set of p, are the periodic components and
their preimages.

See for example [St] or [Mi].

Theorem 2. There exists a neighborhood U of p in C1
W (C), such that each f ∈ U

satisfies conditions 1 to 4 above.

The remaining of this section is devoted to the proof of this theorem. The first
result is trivial and one of the reasons why Whitney topology is considered. See
for example reference [H], where the properties of Whitney topology are clearly
exposed. If f were a Cr perturbation of p in the topology Cr(S2), then the in-
tersection of the critical set of f with a neighborhood of ∞ may possibly become
a nonconnected set with d − 1 components, where d is the degree of p, and the
analytic continuation of the fixed point at ∞ may not be critical anymore.

Lemma 1. For every f in a neighborhood of p in C0
W (C), the point at ∞ is an

attractor.

This means that under this hypothesis, f is a proper map of C and there exists
a disc D with the property that f(D) contains the closure of D and such that the
future orbit of any point outside D diverges.
Now consider a C1

W perturbation f of p. The hypothesis on p imply that the Julia
set of p is hyperbolic and hence expanding, in the sense that |p′(z)| > 1 for every
z ∈ Jp where the norm is considered with respect to a hyperbolic metric in an open
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set containing Jp. This implies that p is C1-Ω stable by the theorem of Przytycki.
For f close to p define Ω′(f) = Ω(f) \ {periodic attractors}. Obviously periodic
attractors of p are carried by the conjugacy h to attracting periodic points of f , so
that h must carry Jp onto Ω′(f).

Lemma 2. If f is C1
W close to p, then Ω′(f) = ∂B∞(f).

Proof : To prove that ∂B∞(f) ⊂ Ω′(f), observe first that there exists a neigh-
borhood U of Ω′(p) and a neighborhood U of p such that f−1(U) ⊂ U and
⋂

n≥0 f
−n(U) = Ω′(f) for every f ∈ U . This holds because p is a hyperbolic

polynomial and by C1 Ω-stability. If x /∈ Ω′(f), then there exists an n = nx ≥ 0
such that fn(x) /∈ U , then x belongs to the basin of an attractor and cannot belong
to ∂B∞.
To prove the other inclusion take a point z ∈ Ω′(f) and V a neighborhood of z.
It is known that the restriction of p to Jp is locally eventually onto; by conjuga-
tion, this also holds for the restriction of f to Ω′(f). Using this and the other
inclusion, already proved, there exist n > 0 and x ∈ V ∩ Ω′(f) such that fn(x)
belongs to the boundary of B∞(f). Let U ⊂ V be a neighborhood of z such that
U ∩ Ω′(f) = V ∩ Ω′(f) and U does not intersect the set of critical points of fn.
Then x ∈ U and fn is open in U , so fn(U)∩B∞(f) 6= ∅ and hence U , and also V ,
intersect B∞(f).

�

Note that it was not used that the basin of ∞ is simply connected.
Proof of theorem 2 : The first assertion of (1) follows from lemma 1. As the
perturbation f is a proper map of the plane, it follows that the restriction of
f : C \ f−1(Sf ) → C \ f(Sf ) to a component of its domain is a covering map (see
[IP], proposition 2). Then the basin of ∞ must be connected. Simple connectivity
is now a consequence of the fact that the boundary of B∞(f) is connected (by
lemma 2 and the theorem of Przytycki). Also (2) is an immediate consequence of
the above arguments.
Let V be a component of the complement of the closure of B∞(f). It is clear that
the boundary of V is contained in the boundary of B∞(f), from which it follows
that V is simply connected. Moreover, the boundary of V is a Jordan curve, because
the contrary assumption implies that the complement of the unbounded component
of the boundary of V contains points of the boundary of V and this contradicts the
fact that the boundary of V is contained in the boundary of B∞(f). This proves
(3). To prove the remaining statement it is sufficient to show that every point in
the complement of the closure of B∞(f) is attracted to a periodic attractor. For
this an argument similar to that of the proof of lemma 2 works: indeed, if U is
a small neighborhood of the boundary of B∞(p), then the complement of U is a
compact set contained in the union of the basins of the periodic attractors of p,
and the conclusion follows because this condition is open in the topology under
consideration.

Given f in a small C1 neighborhood U of p, one can define Cf as the set of Fatou
components of f , which are the components of the complement of Ω(f). The result
above implies that given any g ∈ U there exists a natural map a : Cf → Cg such
that a(f(C)) = g(a(C)) for each C ∈ Cf . The bijection is defined first assigning
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immediate basins of attractors of f to elements of Cg corresponding by analytic
continuation.

3. Construction of conjugacies

In this section, the C1 Whitney perturbations of a polynomial p satisfying con-
ditions (1) of the theorem will be considered. By the theorem of Böttcher, any
complex polynomial is holomorphically conjugate to z → zd locally at ∞, where d
is the degree of the polynomial; moreover, under the hypothesis of part (1) of the
theorem (as the Julia set is connected, ∞ is the unique critical point of p in B∞),
the conjugacy extends to the whole basin of ∞.
The same proof of Böttcher theorem yields a conjugacy between f and p in a
neighborhood of ∞. This local conjugacy (obviously not holomorphic) dynamically
extends to a conjugacy that is close to the identity in the whole basin:

Lemma 3. Given any ε > 0 there exists a C1 neighborhood U of p such that for
every f ∈ U there exists a map h : B∞(f) → B∞(p) such that hf = ph in B∞(f)
and |h(z) − z| < ε.

Proof. Let U be a neighborhood of Jp and U0 a C1 neighborhood of p such that
for every f in U0, f

−1(U) ⊂ U and f is λ-expanding in U , where λ > 1.
Let H : {|z| > 1} → B∞(p), be Böttchers conjugacy between p and zd. By the
same argument given in [Mi] to prove Böttcher theorem, the following assertion
holds:
Given ε > 0 and k > 0 there exists a neighborhood U1 ⊂ U0 such that, for every
f ∈ U1, there exists a homeomorphism h : B∞(f) → B∞(p) such that hf = ph and
|h(z) − z| < ε for every z such that |H−1(z)| > 1 + k.
The number k is now chosen so that there is a fundamental domain D for the
restriction of f to B∞(f) contained in U ∩h−1(H({z : |z| > 1+ k})). It remains to
prove that h is ε- close to the identity in the whole B∞(f). Given any z ∈ U such
that f(z) ∈ D, let w be such that h(z) = w so that p(w) = h(f(z)). Let also w′ be
close to z such that p(w′) = f(z), and note that

|w − z| = |w − w′| + |z − w′| ≤ λ−1ε+ δ,

where it was used that h is ε-close to the identity in D and where δ is the distance
between local inverses of f and p. Now diminish the neighborhood U1 in such a way
that δ ≤ ε(1 − λ−1) to obtain that |h(z) − z| < ε also holds for z in the preimage
of D. Then continue for every f−n(D) by induction. �

Conjugacy in bounded domains.

Let {c1, . . . , cr} be the set of finite critical points of p. These points are all contained
in the basins of the bounded attractors. For every i let Vi be a small neighborhood
of ci, such that Vi ∩ Vj = ∅. Let α be a positive number less than the distance
between any two different Vi. Then there exists a C1

W neighborhood U of p, such
that for every f ∈ U , the critical set Sf is contained in V = ∪Vi, and so every
critical point of f belongs to the basin of a periodic attractor of f . Assume that
f and g are α-geometrically equivalent maps C1 close to p. This means that there
exist diffeomorphisms of the plane ϕ and ψ such that ϕf = gψ, moreover, the
choice of α assures that the map ψ must carry Sf ∩ Vi to Sg ∩ Vi. Begin with a
fixed attracting point of p and consider its smooth continuation xf for f ∈ U . The
basin of xf is denoted by Bf and the immediate basin by Uf . Note that theorem
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2 implies that Uf is simply connected. The objective throughout this section is
to prove that there exists a homeomorphism h realizing the equivalence of f |Uf

and g|Ug
. This map will be produced as an extension of the restrictions of ϕ to a

neighborhood of the set of critical values and of ψ to a neighborhood of the set of
critical points of f in Uf .

Lemma 4. If f and g are geometrically equivalent maps C1 close to p, then their
restrictions to Uf and Ug are topologically equivalent.

Proof. It will be assumed first that p has only one critical point c in Bp.
Let Vf be a neighborhood of xf , such that f |Vf

is a diffeomorphism and the
annulus Af = Vf \ f(Vf ) is a fundamental domain. It is also possible to choose Vf

and a topological disc Wf , containing Sf , such that f(Wf ) is also a topological disc
contained in the interior of Af (see figure 1). For the map g define corresponding
Vg, Ag and Wg. Moreover, Wg is chosen so that ϕ(f(Wf )) = g(ψ(Wf )) = g(Wg).
Identifying the boundaries of the annulus Af (resp. Ag) via f (resp. g) one obtains
tori Af |f and Ag|g. There exists an orientation preserving homeomorphism h (that
can be chosen C0 close to the identity because Wf and Wg are arbitrary small):

(1) h : Af |f → Ag|g,

realizing a conjugacy between the maps induced by f and g to the given domains,

Figure 1.

Sf

Wf

f(Vf )xf

Vf

f(Sf )f(Wf )

Af

A

Sg

Wg = ϕ(Wf )

g(Vg)
xg

Vg

g(Sg)

Ag

g(Wg)ϕ

ψ

and such that the restriction of h to f(Wf ) is equal to ϕ (recall that ϕ is ori-
entation preserving). Moreover, one can dynamically extend h to the whole Vf .
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It is claimed now that there exists (a unique) extension of h to Uf \W
′

f , where

W
′

f =
⋃

m≥0 f
−m(f(Wf )). First extend h to the preimage of Vf . Observe that

f : f−1(Vf \ f(Wf )) → Vf \ f(Wf ) is a covering map of degree d
′

, from which it

follows that hf : f−1(Vf \ f(Wf )) → Vg \ g(Wg) is a degree d
′

covering map. Also

the restriction of g to g−1(Vg \ g(Wg)) is a degree d
′

covering map onto Vg \ g(Wg).

To show that there exists a lift h̃ of hf , one can consider induced maps in homotopy
groups. The domains of g and hf are open connected sets in the plane with the
same connectivity, and the proximity of the maps implies that the action on relative
generators of the induced maps are equal. This implies that there exists a unique
lift h̃ of hf such that gh̃ = hf and h̃(xf ) = xg. The uniqueness of h̃ implies that it
extends h.

g−1(Vg \ g(Wg))

g

��

f−1(Vf \ f(Wf ))

h̃

55

hf
// Vg \ g(Wg)

The same argument shows how to extend h to the whole Uf \W ′
f . Finally one

must extend h to Uf .
To define h in Wf and its preimages, other details must be taken into account,
relative to the fact that the restrictions of h and ψ to the boundary of Wf may be
equal or not. In the first case, h can be extended to Wf as equal to ψ and then
to the remaining part of Uf dynamically. But in the other case h and ψ differ in
the boundary of Wf , so the definition of h started in formula (1) must be changed.
Note that the set of points of ∂Wf where h and ψ are equal is open and closed in
∂Wf , so it suffices to find a way of make them coincide at just one point. Note that
the definition of h in Vf is somehow arbitrary; Let A be a small annulus contained
in Vf and whose interior boundary is equal to the boundary of f(Wf ). Let D be a

Dehn twist supported on A, define hi = h ◦Di and h̃i as the lift of hi. This implies
that if r is a point in the boundary of Wf , then h̃i(r) takes all the possible values of

g−1(h(f(r))). So one can choose i such that h̃i(r) = ψ(r). This finishes the proof
in the case that there exists just one critical point in Bp.
If there are more than one critical point in the basin of xf then the arguments
are similar, so we explain the differences and omit the details. Let c1, ..., cr be
the critical points of p in that basin. Let f , xf , Vf and Af be as above; let W j

f

j = 1, ..., r be a small disc containing the components of Sf close to cj . For every

1 ≤ j ≤ r there exists an nj ≥ 1 such that fnj (W j
f ) ⊂ Af . Define h in Vf in such

a way that its restriction to fnj (W j
f ) is equal to

gnj−1ϕf−(nj−1)|
f(W j

f
)

As above, h is extended to Vf and the same argument shows how to define it in

Uf \
⋃

n≥0

f−n





r
⋃

j=1

fnj (W j
f )



 .
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For each j, let A
′

j be a small annulus whose interior boundary is equal to boundary

of fnj (W j
f ) and let Dj by a Dehn twist supported on A

′

j . To make h̃ coincide with
ψ one just needs to compose h with adequate iterates of the maps Dj .

�

This previous result concerned with fixed domains. Suppose now that the poly-
nomial p has an attracting cycle αp = {x1

p, ..., x
n
p}. For every f close to p in C1

topology, denote by U1
f , ..., U

n
f the components of the immediate basin of the attrac-

tor αf = {x1
f , ..., x

n
f }, C

1 continuation of αp. Define also Uf =
⋃

U j
f . The following

is an easy generalization of the previous lemma 4, and its proof is omitted.

Lemma 5. If f and g are geometrically equivalent maps C1 close to p, then they
are also topologically equivalent when restricted to the grand orbits of Uf and Ug.

Using that every component of the complement of the set Ω
′

(f) is preperiodic
and the previous results, it follows that:

Corollary 2. Given ε > 0 there exists a C1 neighborhood U of p such that, if f
and g are geometrically equivalent maps in U , then there exists h : R

2 \ Ω
′

(f) →

R
2 \ Ω

′

(g), homeomorphism that conjugates f and g and such that |h(z) − z| < ε.

Proof. It remains to show the uniform proximity to the identity in the bounded
domains, but this is similar to the unbounded case (lemma 3); the main fact that
makes the above arguments work is the following: given any neighborhood U of
∂B∞(p) and given a fundamental domain Di in each periodic component of the
Fatou set of f , there exists a positive integer N such that f−N (∪Di ∪ F ) ⊂ U ,
where F denotes the union of the nonperiodic components of the Fatou set of
f . �

Example: The reason why the α-geometric equivalence is needed is explained in
the following example. Assume that p is a polynomial with two attracting fixed
points x1 and x2 with immediate basins B1 and B2. Assume that B1 contains a
critical point c1 and B2 contains two critical points c2 and c3. Let f and g be C1

perturbations of p such that the following holds:
1. Sf ∩B1 is homeomorphic to a circle and Sf ∩B2 is equal to {c2, c3}.
2. Sg ∩ B1 = {c1} and Sg has two components in B2, one of them is a point and
the other a circle.
The maps f and g may be chosen as geometrically equivalent, but cannot be topo-
logically equivalent. Note that necessarily the image under ψ of Sf ∩B1 is contained
in B2.

Extension to the boundary of B∞(f)

It is already known that there exists a conjugacy h between the restrictions of
f and g to the Fatou components of f . It was also explicit that the conjugacy h
can be chosen as close to the identity as wished, by diminishing the neighborhood
U of p (see lemma 3 and corollary 2). On the other hand, the theorem of Przytycki
provides a conjugacy hp of these maps in the boundaries of the respective domains.
It remains to prove that h can be continuously extended to the closure of B∞(f),
and that in the boundary is equal to the conjugacy of Przytycki. We first show
that h extends continuously to the boundary and that it is close to the identity.
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Let ε0 be a constant of expansivity of the restriction of p to its Julia set, that is,
for every z 6= w in Jp there exists N > 0 such that |pN (z) − pN (w)| > ε0.

Corollary 3. There exists a C1 neighborhood U of p such that, for geometrically
equivalent maps f and g in U , it holds that the conjugacy h of corollary 2 extends
to the boundary of B∞(f) and is a homeomorphism.

Proof. Choose U such that the distance between the identity and h is less than ε0/2.
Let x ∈ ∂B∞(f) and xn → x, where xn /∈ ∂B∞(f). We claim that h(xn) converges.
Otherwise, one can choose cluster points z 6= y of h(xn). By the choice of ε0 there
exists N > 0 such that |gN (y)− gN (z)| > ε0. Then hfN (xn) accumulates at gN (y)
and gN (z), but as fN (xn) converges to fN (x), a contradiction appears because h
is ε0/2 close to the identity. Define h in the boundary as the limit of h(xn). The
claim implies that h is continuous and surjective. Finally h is injective because two
points z and w with the same image would verify that |fn(z) − fn(w)| eventually
becomes greater than ε0, while h(fn(z)) = h(fn(w)) for every n > 0.

�

4. Proof of theorem 1

Proof of (1) ⇒ (2)
This has been already done in the previous section. Corollary 3, gives the map h,
defined in the whole plane, realizing the conjugacy between f and g. As h is close
to the identity, then its restriction to the nonwandering set must coincide with the
conjugacy of Przytycki.
Proof of (2) ⇒ (1)
The hypothesis give a C1

W neighborhood U of p such that geometric and topological
equivalence are the same in U . Maps of class C3 are dense in U and their critical
points have a generic structure. The proof of the following lemma can be found in
[IP].

Lemma 6. Let c be a simple critical point of p, that is, p′(c) = 0 6= p′′(0). There
exist a neighborhood U of c, a C3 neighborhood U0 of p and an open and dense
subset G of U0 such that, for every f ∈ G, the intersection Sf ∩ U is diffeomorphic
to a circle.
Moreover, there exists f ∈ G such that the restriction of f to Sf ∩ U is injective
and Sf ∩ U contains exactly three cusp type points.

Remark 1. Here we use some elementary facts about singularities of differentiable
mappings in dimension two, a classical reference is the book by Golubitsky and
Guillemin [GG].
We do not know if there exists a neighborhood U0 of p such that the restriction of
every map f ∈ G ∩U0 to Sf ∩U is injective. It is known, however, that there exists
at least one cusp type point in the boundary of the unbounded component of the
complement of Sf ∩ U .
The classification of critical points for generic maps is very easy in dimension two.
Indeed, if c is a critical point of a generic map f , then the kernel of Dfc has di-
mension one. The critical point c is a fold point if the kernel of Dfc is not equal to
the tangent space of Sf at c and is a cusp point otherwise. Moreover, normal forms
are known for both kind of critical points:
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The normal form of a fold point is (x, y) → (x2, y).
The normal form of a cusp point is (x, y) → (x3 − xy, y).
It can also be shown also that fold points are C2 persistent and cusp points are C3

persistent. As well as maps having critical points cannot be C1 structurally stable,
it can be concluded now that maps with cusp type points cannot be C2 structurally
stable, because a conjugacy between two maps must carry cusp critical points to
critical points of the same type.
As any generic perturbation of a polynomial has a cusp type point, it follows, as
asserted in the introduction, that in a small neighborhood of a polynomial no map
can be C2 structurally stable.
It follows also that if f ∈ G and the restriction of f to Sf is injective, then the same
holds in a C3 neighborhood of f .

Suppose that every critical point of p is simple, and let Sp = {ci : 1 ≤ i ≤ d−1};
for each i, let Ui be a small neighborhood of ci, and Gi the generic set associated
with ci as in lemma 6.
Recall that p satisfies the non critical relations property, so the degree of p is d,
and the number of finite critical values of p is d− 1.
Define G′ ⊂ U as the set of maps f such that f |Sf

is injective and f belongs to
every Gi. It follows that Sf has d − 1 connected components, each one of them
homeomorphic to the circle and such that the restriction of f to Sf is injective.
The proof that G′ is nonempty is left to the last corollary. This, together with the
following proposition, will provide the examples of structurally stable maps.

Proposition 1. If f ∈ G′, then f is C3- geometrically stable.

Proof. Let g be a C3 perturbation of f , let {C1(g), . . . , Cd−1(g)} be the components
of the set of critical values of g.
Let ϕ be a diffeomorphism of the plane close to the identity that carries Ci(f)
onto Ci(g) preserving cusps. For each i choose a curve αi joining the image of a
cusp point zi ∈ Ci(f) with infinity. This can be done without any intersection,
that is, the curves αi are simple, disjoint and the intersection of αi with ∪Ci(f)
is the set {zi}. Let βi = ϕ(αi) and define H(f) as the complement of the union

of S̃f := f−1(f(Sf )) with ∪if
−1(αi) and H(g) as the union of the unbounded

components of the complement of the union of S̃g with ∪ig
−1(βi). See the figure 2

below with d = 2.
Each component of H(f) corresponds to a unique component of H(g) by proxim-

ity. Moreover, these components of H(f) are simply connected, and the restriction
of f to each of them is a diffeomorphism onto its image. Therefore, for each compo-
nentHj(f) ofH(f) there exists a unique diffeomorphism ψj that satisfies ϕf = gψj ,
and whose image is the corresponding component of H(g). These diffeomorphisms
can be extended to a unique diffeomorphism ψ of the plane such that ϕf = gψ. �

Proof of the connectedness of the Julia set of p.
Observe that there exists a neighborhood of ∞ foliated by curves homeomorphic
to circles that are invariant under f . This foliation Ff is invariant and must be
preserved by conjugacies. If Jp is not connected, then there exists a critical point
c = c1 of p contained in B∞(p); c is the critical point of p closest to ∞ (i.e. the
circle of the foliation that contains c is the boundary of an open neighborhood of
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Figure 2.
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∞ that does not contain any other finite critical point). Assume first that c is a
simple critical point of p. By the proof of proposition 1 two maps f and g in G1 that
are equal outside the neighborhood U1 of c, are geometrically equivalent. To arrive
to a contradiction it suffices to find f and g as above that are not topologically
equivalent.
Let A be a p-invariant neighborhood of ∞ that contains p(c), does not intersect
U1 and whose boundary is a circle of the foliation Fp. If f is a perturbation of p
with support U1 (f = p outside U1) then the foliations Ff and Fp coincide in A.
Perturb p in U1 such that the perturbation f belongs to G1 and such that there exist
two cusp points that belong to the component of Sf contained in U1 whose images
belong to the same leaf of the foliation Ff . This is possible but is not generic; a
new perturbation g supported in U1 and belonging to G1 can be found such that
the image of the three cusps belong to different leaves of the foliation.
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To treat the case of c not simple, assume that the order of c is k. Given a neigh-
borhood U0 of c there exists a C∞ perturbation q of p such that:

• q = p outside U0.
• There exists an arbitrary small neighborhood U ′

0 ⊂ U0 of c such that q is
holomorphic in U ′

0.
• q has k critical points in U0 all contained in U ′

0.

Once this q was obtained, one can proceed as above.

�

Proof of the hyperbolicity of p.
The first step is to prove that the Julia set cannot have critical points if some type
of C1 stability is required. The proof is very simple, which contrasts with the fact
that the problem is open when only holomorphic perturbations are allowed.

Proposition 2. If p has a critical point in its Julia set, then in every C1 neigh-
borhood of p there exists an f that is geometrically but not topologically equivalent
to p.

Proof : Let U be a C1 neighborhood of p and c be a critical point of p in
Jp. This implies that there exist expanding periodic points accumulating at c. An
argument based in J.Franks lemma [F] will imply the existence of a map f in a C1

neighborhood of p such that f and p have the same sets of critical points but f has
a new attracting periodic orbit. Indeed, if ε is such that f ∈ U if the C1 distance
between p an f is less than ε, then take a periodic orbit of p contained in Jp and
containing a point z close to c in such a way that |p′(z)| < ε. Let K = |(pn)′(z)|,
where n is the period of the orbit of z. Note that there exists a neighborhood of the
orbit of z such that the restriction of p to this neighborhood is a diffeomorphism
onto its image. Under these conditions, Franks’ lemma asserts that there exists a
map f ∈ U such that:

• The orbit of z under f is the same as that of p.
• For every 0 < j < n, the differential of f at f j(z) is equal to that of p at

the same point. Moreover, f is also conformal at z, and |f ′(z)| < |p′(z)|/K.
• The support of the perturbation is an arbitrary small neighborhood of the

orbit of z not intersecting the critical set of p or the set of periodic attractors
of p.

• The perturbation f is a diffeomorphism onto its image when restricted to
the support of the perturbation.

The first three items imply that f has a new periodic attractor (the orbit of z) and
so it is not topologically equivalent to p. It is geometrically equivalent to p because
the support of the perturbation is disjoint with the set of critical points of p.

�

To conclude the proof of the hyperbolicity of p, one has to show that every crit-
ical point is attracted to a periodic attractor. First of all note that every periodic
point of p must be hyperbolic: under the contrary assumption one can perturb in
a neighborhood of the nonhyperbolic orbit to obtain a map that is geometrically
but not topologically equivalent to p. This implies that the Fatou set of p does not
contain Leau components neither Siegel discs. Herman rings are forbidden since
the Julia set of p is connected. Finally, as the set of critical points do not intersect
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the Julia set and there are no superattractors, the conclusion is immediate from
the classification theorem of Sullivan, see [Mi] or [St].

Proof of corollary 1

First perturb p to a polynomial p0 having no critical relations. It suffices to show
that in every C∞ neighborhood of p0 there exists a map f ∈ G′, because by propo-
sition 1 this map will be geometrically equivalent to every map g in a C3 neigh-
borhood of it, and then (1) ⇒ (2) of theorem 1 implies the topological equivalence
between f and g. It is very easy to give an example that is generic in the sense
of lemma 6 and such that the restriction of f to Sf is injective. It suffices to do
it locally, and as the critical points of p0 are nondegenerate, it suffices to give just
an example of a perturbation f of p(z) = z2 such that f ∈ G′. An explicit exam-
ple is: (x, y) → (x2 − y2 + λy, 2xy), λ 6= 0. So to construct an example of a C3

structurally stable map, just take p(z) = z2 + ε (ε small so that Jp is connected
and hyperbolic) and then perturb in a neighborhood of 0 so that the new map f
has the representation above in that neighborhood.

�

Example.

We exhibit a map f that is C3 geometrically stable and C3 Ω-stable but cannot be
C3 approximated by a C3 structurally stable map. Begin with p(z) = z2 − 3 and
perturb it, as in corollary 1, to f(x, y) = (x2 − y2 +λy− 3, 2xy). It was shown that
f is C3 geometrically stable and C3Ω- stable. If g is C3 close to f , the critical set
Sg is a simple closed curve with three cusp type points contained in the basin of ∞.
There exists a leave γ of the foliation by circles that contains the image of a cusp
c and another critical value f(z) (we can assume that z is a critical point of fold
type). As the set

⋃

n>0 f
−n(fn(c)) is dense in γ, we can find a small perturbation

g1 of g supported in a neighborhood of c, such that for some n gn
1 (c) = gn

1 (z). Then
perturb g to a map g2 such that gn

2 (cg2
) ∩ gn

2 (Sg2
\ cg2

) = ∅, where cg2
is the set of

cusps of g2. Then g1 and g2 cannot be topologically equivalent.

Further considerations.

Throughout this discussion, M is a manifold of dimension at least two and Ir(M)
denotes the space of maps p having a strong Cr neighborhood where geometric
equivalence implies topological equivalence. So we have proved that a polynomial
without critical relations belongs to I1(S2 \ ∞) iff its Julia set is hyperbolic and
connected. However, the arguments used imply also other results.

Theorem 3. If R is a hyperbolic rational map without critical relations (hence
without superattractors), then R ∈ I1(S2). It follows that any rational map can be
C∞ approximated by C3(S2) structurally stable maps.

The first assertion follows directly from the arguments of the proof that (1) →
(2). To prove the second one first perturb to a rational map that has no critical
relations.
Another corollary of the arguments of the proof of theorem 1 give C1 structurally
stable maps:

Corollary 4. The map z → zd is C1 structurally stable in C1
W (C \ 0).

About stability, some of the results here attained are now briefly commented.
The case of compact M will be now considered.
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Let Er(M) be the set of nonexpanding noninvertible endomorphisms, and Str(M)
the set of Cr structurally stable maps.
As far as we know, there exist no examples in St1(M)∩E1(M) if M has dimension
at least two. Note that Sf = ∅ is a necessary condition for a map f to be C1 stable.
The theorem of N.Aoki, K.Moriyasu and N.Sumi in [AMS] implies that a map in
St1(M) must satisfy the Axiom A and, as is the case for diffeomorphisms, also
the strong transversality condition. However, these conditions are not sufficient for
stability, as was shown by an example of F.Przytycki in [P]. It seems difficult to
find examples of structurally stable maps having saddle type basic pieces: indeed,
unstable manifolds of a basic piece may have self intersections and can also visit
different basic pieces. On the other hand, the arguments in this article seem to
be extendable to prove stability in other situations, where the maps have only ex-
panding or attracting basic pieces. It can be proved (work in progress) that if a
noninvertible Axiom A map has no saddle type basic pieces, then there must be
critical points in the immediate basin of any attractor. It follows that a C1 struc-
turally stable map must have saddle type basic pieces.
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and second authors were partally supported by PEDECIBA Uruguay.

References

[AMS] N.Aoki, K.Moriyasu, N.Sumi. C1 maps having hyperbolic periodic points. Fundamenta

Mathematicae 169 p 1-49. 2001.
[F] J. Franks. Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math. Soc.

158, 301-308, 1971.
[GG] M. Golubitsky, V. Guillemin. Stable mappings and their singularities. Graduate texts in

mathematics 14. Springer, New York, 1973.

[H] M. Hirsch. Differential Topology. Springer-Verlag, New york, Heidelberg, Berlin , 1976.
[IP] J. Iglesias, A. Portela. Real Perturbations of complex polynomials. Bull. Braz. Math. Soc.,

New Series, 38 (1), 129-155, 2007.
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