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Abstract
1 It is known that not every Cantor set of S1 is C1-minimal. In this

work we prove that every member of a subfamily of the called regular interval
Cantor set is not C1-minimal. We also prove in general, for a even large class
of Cantor sets, that any member of such family can be C1+ε-minimal, for any
ε > 0.

1 Introduction

If f : S1 → S1 is a diffeomorphism without periodic points, there exists a unique
set Ω(f) ⊂ S1 minimal for f (we say that Ω(f) is C1-minimal for f). In this case
Ω(f) is a Cantor set or it is S1. Up to now, the C1-minimal Cantor sets that
are known are the Danjoy examples and its conjugates. However we know that
some families are not C1-minimal. For example, in [2] Mc Duff demonstrates that
the usual middle thirds Cantor set is not C1-minimal and gives some conditions
for a Cantor set that imply that it is not C1-minimal. In [6] we can find other
conditions that imply the no C1-minimality too. In [5] A. Norton demonstrates
that the family of the affine Cantor sets is not C1-minimal too. In this work we
construct new families of Cantor sets that are not C1-minimal and other families
of Cantor sets that are not C1+ε-minimal (for any ε > 0).

1.1 Regular interval Cantor sets

The regular interval Cantor set construction imitates the procedure utilized to ob-
tain the usual middle thirds Cantor set. Given two sequences {mi} and {θi} with
mi a positive integer and 0 < θi < 1, we proceed as follows. In the first step we
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remove m1 open intervals with the same measure from the circle, distributed in
the same way, obtaining the closed set K1 = ∪∆i1 (i1 = 1, ...,m1) with Lebesgue
measure |K1| = θ1, where ∆i1 are the connected components of K1. In the sec-
ond step, we remove m2 open intervals of the same measure from each connected
component ∆i1 , distributed in the same way, obtaining the closed set K2 = ∪∆i1i2

(i2 = 1, ...,m2 + 1) with measure |K2| = θ2|K1|, where ∆i1i2 are the connected
components of K2. Proceeding inductively, we obtain, for each n, a closed set
Kn ⊂ S1, contained in Kn−1, with measure |Kn| = θn|Kn−1|, and Kn = ∪∆i1...in

(in = 1, ..., mn + 1 ), where ∆i1...in are connected components of Kn. We define
K =

⋂
Kn. This set is a Cantor set, and we will call regular interval Cantor

set to every set K constructed in this way.

1.2 Quasi regular interval Cantor sets

Now we are going to give the construction of a family of Cantor sets that contains
the regular interval Cantor sets. Given a sequence {ni} of positive integers with∑

i<j ni ≤ nj , we proceed as follows. In the first step we remove n1 open intervals
of the same measure from S1, obtaining a closed set K1 =

⋃
∆1i1 (i1 = 1, ..., n1),

where ∆1i1 are the connected components of K1. In the second step, we remove
n2 open intervals of the same measure form K1, removing at least an interval of
each connected component of K1, obtaining the closed set K2 =

⋃
∆2i2 (i2 =

1, ..., n1 +n2), where ∆2i2 are the connected components of K2. We do not require
the intervals removed to be likewise distributed. Proceeding inductively, for each
m we obtain a closed set Km ⊂ S1 contained in Km−1 and we write Km =

⋃
∆mim

(im = 1, ..., n1 + ...+nm) where ∆mim are the connected components of Km. Then,
we define K =

⋂
Km. The set K is a Cantor set if, and only if, νm = max{|∆mim | :

im = 1, ..., n1 + ... + nm} → 0 when m →∞. We will call quasi regular interval
Cantor set to every Cantor set K constructed in this way. Note that with this
procedure we do not obtain all Cantor sets of S1. If µm = min{|∆mim | : im =
1, ..., n1 + ... + nm}, the number δ = inf{µm/νm : m ∈ N} gives an idea of the
irregularity of the Cantor set K. This number depends on the set K and the
procedure to obtain K. Then, we define the regularity of K as the supreme of the
set of δ, taking all the possible procedures to obtain K. Note that if the Cantor
set K is a regular interval Cantor set, its regularity is 1.

2 Main results

Theorem 1. If the Cantor set K is C1-minimal for a diffeomorphism f , and Kc

has only one orbit of wandering intervals, then K is not a quasi regular interval
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Cantor set.

Theorem 2. If K is a quasi regular interval Cantor set of regularity different from
0, then K is not C1+ε-minimal for any ε > 0.

As all regular interval Cantor sets have regularity 1 then, from the previous
theorem, we have the following result.

Corollary 1. If K is a regular interval Cantor set, then K is not C1+ε-minimal
for any ε > 0.

If the regular interval Cantor set K has positive measure and we suppose that
it is C1-minimal for f we obtain several conditions for f ′. Let mi be the quantity
of intervals removed in the step i of the construction of K. In this case, we have
the following result.

Theorem 3. If K is a regular interval Cantor set of positive measure and the
sequence {mi} is not limited, then K is not C1-minimal.

Definition 2.1. If K is a regular interval Cantor set, for each prime integer we
define Aq = {i ∈ N : mi + 1 = 0 (mod q)}.

For the case that Aq is an infinite set we denote its elements by tn (n ∈ N),
with tn < tn+1. Now we can enunciate de following result.

Theorem 4. If K is a regular interval Cantor set of positive measure and there
exists a prime integer q such that Aq is infinite and tn+1 − tn →∞, then K is not
C1-minimal.

3 Generalities

The following lemmas are going to be very useful in the demonstrations of the main
results.

Definition 3.1. If f : S1 → S1 is a diffeomorphism, then for each x ∈ S1 and for
each positive integer n we define F (x, n) =

∑n−1
i=0 logf ′(f i(x)) = lof(fn)′(x).

Lemma 3.1. If the Cantor set K is C1-minimal for f , then there exists x ∈ K
such that F (x, n) ≥ 0, for all positive integer n.

Proof. We suppose by contradiction that for all x ∈ K there exists mx such that
F (x,mx) < 0. By the continuity of f ′, for each x ∈ K there exists δx > 0 such that
for every point y in the interval (x − δx, x + δx), F (y,mx) < 0. As the family of
intervals (x−δx, x+δx) with x ∈ K is a covering of K, and K is a Cantor set, then
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there exists a finite refinement {Ii, i = 1, ..., p} of this covering of open intervals,
disjoint two to two, that is a covering of K. So, for each Ii there exists mi ∈ N
such that for all y ∈ Ii we have F (y,mi) < 0. Besides, S1 \⋃p

i=1 Ii is a finite union
of closed intervals, each of which is contained in a connected component of Kc that
we call Ji, with i = 1, ..., p. We consider m = max{mi : i = 1, ..., p} and M ≥ 1 the
maximum of f ′. We consider a wandering interval T of the past of J1 such that
|T |Mm < min{|J1|, ..., |Jp|}. Now we will demonstrate that if j is a positive integer
then |f j(T )| < |J1|, and this is a contradiction. By the choice of T , we know that
T is contained in Ii for some i. By the Mean Value Theorem, there exists θ ∈ Ii

such that
|fmi(T )| = |T |(fmi)′(θ).

As F (θ, mi) < 0, we have (fmi)′(θ) < 1 and so

|fmi(T )| < |T |.
We can repeat this process with fmi(T ) instead of T . Proceeding inductively we
conclude that there exists a sequence ν1, ν2, ..., νk, ... with νk ∈ {m1, ...,mp} such
that for all positive integer r

|f
∑r

k=1 νk(T )| < |T |.
As for all j there exists r0 ≥ 0 such that

∑r0
k=1 νk ≤ j <

∑r0+1
k=1 νk,we have

|f j(T )| = |f j−∑r0
k=1 νk(f

∑r0
k=1 νk(T ))| ≤ Mm|T | < |J1|.

Let K be a Cantor set of the circle and let Kc =
⋃

Ij , where Ij are the connected
components of Kc . We define the spectrum of K (EK) as the orderly set {λi}
(λi+1 < λi), with λi the length of Ij , for some j.

Lemma 3.2. If the Cantor set K is C1-minimal for f and λn/λn+1 6→ 1, there
exists η > 0 and x ∈ K such that F (x,m) ≤ −η, for all positive integer m.

Proof. As λn/λn+1 6→ 1, there exist ε0 > 0 and a sequence {nk} such that 1 + ε0 ≤
λnk

λnk+1
. Let Ink

be a connected component of Kc such that |Ink
| ≥ λnk

and for all

j > 1, |f j(Ink
)| ≤ λnk+1. By the choice of Ink

we have that |Ink
| → 0 when k →∞.

Let x be a point of accumulation of the set of the intervals Ink
(x ∈ K) and {ki} a

sequence such that d(x, Inki
) → 0 when i →∞. Therefore, for every m ≥ 1, there

exists i sufficiently large such that

1 + ε0 ≤
λnki

λnki
+1

≤ |Inki
|

|fm(Inki
)| .
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Then

F (x, m) = log(fm)′(x) = log

(
lim
i→∞

|fm(Inki
)|

|(Inki
)|

)
≤ − log(1 + ε0).

Lemma 3.3. If the Cantor set K is C1-minimal for f and λn/λn+1 6→ 1 then for
every point x ∈ K, F (x,m) is not limited.

Proof. By the transitivity of K (for f), it is enough to demonstrate the property
for any point of K. Let x and the number η be as in lemma 3.2 and suppose by
contradiction that F (x,m) is limited. Therefore if y = inf{F (x,m) : m ∈ N},
there exists a positive integer p such that |F (x, p)− y| < η/2. So

F (fp(x),m) = F (x,m + p)−F (x, p) = F (x,m + p)− y− (F (x, p)− y) >
−η

2
(1)

for all positive integer m. We consider {nk} such that fp+nk(x) has limit x when
k →∞. From the uniform continuity of f ′ we have that

|F (fp(x), p+nk)−F (x, p+nk)| ≤
p−1∑

i=0

| log f ′(fp+nk+i(x))−log f ′(f i(x))| = δ(nk) → 0

when k →∞. Then

F (fp(x), p + nk) < F (x, p + nk) + δ(nk) < −η + δ(nk),

so utilizing (1) we have a contradiction.

4 Geometric rigidity

In this section we are going to prove two geometric properties for the quasi regular
interval Cantor sets and that if, we suppose that a Cantor set K of this family is
C1-minimal for f , we obtain rigid conditions for f ′.

Lemma 4.1. If K is a quasi regular interval Cantor set, µn < 2π
2n−1 , for all integer

n > 1.

Proof. We are going to prove that if µn < 2π
2n−1 , µn+1 < 2π

2n . Proved this, as µ1 < 2π
we have demonstrated the lemma. From the construction of K we know that there
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exist integers j1, j2 and j3 such that ∆nj1 < 2π
2n−1 and such that ∆n+1,j2 and ∆n+1,j3

are contained in ∆nj1 . Therefore

min{|∆n+1,j2 |, |∆n+1,j3 |} ≤
|∆n,j1 |

2
<

2π

2n
,

and from here follows the thesis.

Lemma 4.2. If K is a quasi regular interval Cantor set, λn/λn+1 6→ 1, when
n →∞.

Proof. Let {li} be the sequence where li is the length of the open intervals removed
in the step i of the construction of K. From the construction of K we have that the
open intervals removed in the step n are contained in Kn−1 , so from the previous
lemma we have that ln < 2π/2n−2 for n > 2. Then, for n > 2 we have

# ({log λi} ∩ [−(n− 2) log 2 + log 2π, 0]) < n. (2)

Suppose by contradiction that λn/λn+1 → 1. Then for all ε > 0 there exists n0 > 0
such that for all n ∈ N

0 < log λn0+n−i − log λn0+n+1−i < log(1 + ε)

with i = 0, ..., n, so

0 > log λn0+n > log λn0 − n log(1 + ε).

Then
#({log λi} ∩ [log λn0 − n log(1 + ε), 0]) ≥ n0 + n. (3)

Utilizing the inequalities (2) e (3) we have

#({log λi}∩[−(n−2) log 2+log 2π, 0]) < n < n0+n ≤ #({log λi}∩[log λn0−n log(1+ε), 0]).

Therefore
−(n− 2) log 2 + log 2π ≥ log λn0 − n log(1 + ε).

As this inequality is true for all n ∈ N and for all ε > 0, taking ε such that
log(1 + ε) < log 2 we have a contradiction.

Lemma 4.3. If a quasi regular interval Cantor set K is C1-minimal for f , there
exists x ∈ K such that f ′(x) > 1.
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Proof. From the previous lemma, we know that there exists ε0 > 0 and a crescent
sequence of positive integers {nj} such that λnj/λnj+1 > 1+ ε0, for all nj . Let I be
a connected component of Kc. Then, the family {f−n(I)} with i ∈ N is a family
of open intervals, disjoint two to two, so |f−n(I)| → 0 when n → ∞. Therefore,
if j is sufficiently large there exists p(j) ∈ N such that |f−p(j)(I)| ≤ λnj+1 and
|f−p(j)+1(I)| ≥ λnj . Then, we have

|f−p(j)+1(I)|
|f−p(j)(I)| ≥ λnj

λnj+1
> 1 + ε0. (4)

Utilizing the Mean Value Theorem, we know that there exists a point θp(j) ∈
f−p(j)(I) such that

|f−p(j)+1(I)| = f ′(θp(j))|f−p(j)(I)|
so

|f−p(j)+1(I)|
|f−p(j)(I)| = f ′(θp(j)). (5)

From (4) and (5) we have
f ′(θp) > 1 + ε0. (6)

If x is an accumulation point of the set {f−p(j)(I)}, it is an accumulation point of
the set {θp(j)} too and, as f ∈ C1, we have that f ′(θp) → f ′(x) when j → ∞, so
from (6) we obtain that f ′(x) > 1.

If K is a quasi regular interval Cantor set and y ∈ K we denote by Ky
n the

connected component of Kn that contains y. The following observations will be of
use for the demonstrations of the next lemmas.

1. If K is a quasi regular interval Cantor set, C1-minimal for f , for all ε > 0
there exists a positive integer n(ε) such that if n > n(ε) and x1,x2 belong to
the same connected component of Kn,

1
1 + ε

<
f ′(x1)
f ′(x2)

< 1 + ε.

2. For all positive integer n and all point x ∈ K there exists a positive number
υ such that if λ is an element of the spectrum of K, smaller than υ, there
exists a connected component of Kc, of length λ, contained in K

f(x)
n such

that its preimage is contained in Kx
n.
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Lemma 4.4. If the quasi regular interval Cantor set K is C1-minimal for f and
x is any point in K, then for all ε > 0 and for all integer m if I is a connected
component of Kc of length so small as necessary, there exists a connected component
I∗ of Kc such that

(f ′(x))m

1 + ε
<
|I∗|
|I| < (f ′(x))m(1 + ε).

Proof. First we suppose that m ≥ 0. We consider ε1 > 0 sufficiently small and
n = n(ε1) as in observation 1. Let Kn be as in the construction of K. If I is a
connected component of Kc of length sufficiently small, there exists I1, connected
component of Kc too, contained in Kx

n such that its length is |I|. From the Mean
Value Theorem we have that there exists θ ∈ I1 such that

|f(I1)| = f ′(θ)|I1| = f ′(θ)|I|.

As θ ∈ Kx
n , utilizing observation 1 we have

f ′(x)
1 + ε1

<
|f(I1)|
|I| < f ′(x)(1 + ε1).

If I is sufficiently small we can repeat this procedure with f(I1) instead of I. Then
there exists I2, connected component of Kc, such that

f ′(x)
1 + ε1

<
|f(I2)|
|f(I1)| < f ′(x)(1 + ε1).

Proceeding inductively we conclude that there exist I3, ..., Im, connected compo-
nents of Kc, such that

f ′(x)
1 + ε1

<
|f(Ii+1)|
|f(Ii)| < f ′(x)(1 + ε1),

with i = 1, ..., m− 1. So

(f ′(x))m

(1 + ε1)m
<
|f(Im)|
|I| < (f ′(x))m(1 + ε1)m. (7)

Given ε > 0 we choose ε1 > 0 such that (1 + ε1)m < 1 + ε. Then, from (7) follows
the thesis. In the case m < 0 we proceed as follows. If I is a connected component
of Kc, sufficiently small, there exists I1, connected component of Kc too, of length
|I|, contained in K

f(x)
n such that f−1(I1) is contained in Kx

n . Therefore, there exists
θ ∈ I1 such that

|f−1(I1)| = (f−1)′(θ)|I1| = |I1|
f ′(f−1(θ))

.
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As f−1(θ) ∈ Kx
n , from observation 1 we have

1
(1 + ε1)f ′(x)

<
|f−1(I1)|
|I1| =

1
f ′(f−1(θ))

<
1 + ε1
f ′(x)

.

So, proceeding as in the first case we obtain the desired result.

Lemma 4.5. If the quasi regular interval Cantor set K is C1-minimal for f , f ′

restricted to K is constant by parts. Even more, if the set of values of f ′ restricted
to K is {a1, ..., an}, then logai/logaj ∈ IQ ( aj 6= 1).

Proof. Let ε0 and {nj} be as in the proof of lemma 4.3. We need to prove that
A = {f ′(x) : x ∈ K} is a finite set. We suppose by contradiction that A is a infinite
set. As f ′ is continuous in S1, the set A has point of accumulation. From here we
conclude that there exist a, b ∈ K, a 6= b, such that

1
1 + ε0

<
f ′(a)
f ′(b)

< 1. (8)

Let ε1 be a positive number such that

1 + ε1 < min

{√
f ′(b)
f ′(a)

,

√
(1 + ε0)

f ′(a)
f ′(b)

}
.

From observation 1 we have that there exists n(ε1) such that if x1 and x2 are in
the same connected component of Kn(ε1),

1
1 + ε1

<
f ′(x1)
f ′(x2)

< 1 + ε1. (9)

Let I1 be a connected component of Kc contained in the connected component of
Kn(ε1) that contains the point a. From the construction of K we have that Kc

n(ε1)
only contains a finite quantity of connected components of Kc. By the Mean Value
Theorem, there exists θ1 ∈ I1 such that

|f(I1)| = |I1|f ′(θ1).

Utilizing 9, and that θ1 and a are in the same connected component of Kn(ε1), we
have

|I1|f ′(a)
1 + ε1

< |f(I1)| < |I1|(1 + ε1)f ′(a). (10)
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If |I1| is sufficiently small there exists I2, connected component of S1 \K, of length
|f(I1)|, such that f−1(I2) is in the connected component of Kn(ε1) that contains b
(observation 2). Utilizing the Mean Value Theorem there exists θ2 ∈ I2 such that

|f−1(I2)| = |I2|(f−1)′(θ2) =
|I2|

f ′(f−1(θ2))
.

From the choice of I2 we have that f−1(θ2) and b are in the same connected
component of Kn(ε1); so applying (9) we obtain

|f(I1)|
f ′(b)

1
1 + ε1

≤ |f−1(I2)| ≤ |f(I1)|
f ′(b)

(1 + ε1).

From this last inequality and (10) we have

|I1|
(1 + ε1)2

f ′(a)
f ′(b)

≤ |f−1(I2)| ≤ |I1|(1 + ε1)2
f ′(a)
f ′(b)

,

and therefore, by the choice of ε1 we have

1 <
|I1|

|f−1(I2)| < 1 + ε0.

Summarizing, we have proved that if I is a connected component of S1 \K with
length sufficiently small, there exists another connected component I∗ of Kc such
that

1 < |I|/|I∗| < 1 + ε0.

Taking I, of length λnj , sufficiently small we have

1 + ε0 >
|I|
|I∗| ≥

λnj

λnj+1
> 1 + ε0

and this is a contradiction. Then, A is a finite set.
Now, we suppose by contradiction that there exist i and j such that log ai/ log aj /∈
IQ. We are going to prove (as in the previous case) that if I is a connected component
of Kc of length sufficiently small, there exists another connected component I∗ of
Kc such that

1 < |I|/|I∗| < 1 + ε0

and we have a contradiction again. As log ai/ log aj /∈ IQ then for all ε1 > 0 there
exist integers m and n such that

−ε1 < m log ai − n log aj < 0,
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so there exist x, y ∈ K such that

e−ε1 < (f ′(x))m(f ′(y))−n < 1. (11)

From lemma 4.4 we have that given ε2 > 0 and I, connected component of Kc,
sufficiently small, there exist I∗ and I∗∗ such that

(f ′(x))m

1 + ε2
<
|I∗∗|
|I| < (f ′(x))m(1 + ε2) (12)

and
(f ′(x))−n

1 + ε2
<
|I∗|
|I∗∗| < (f ′(x))−n(1 + ε2) (13)

Utilizing 11, 12 and 13 we have

(f ′(x))−m(f ′(y))n

(1 + ε2)2
<
|I|
|I∗| <

(1 + ε2)2

e−ε1
. (14)

We take ε2 such that
(f ′(x))−m(f ′(y))n

(1 + ε2)2
> 1,

and ε1 such that
(1 + ε2)2

e−ε1
< 1 + ε0.

So, from 14 we have proved what we want.

5 Proof of the theorem 1

For the proof of theorem 1 we need the following two lemmas.

Lemma 5.1. If x ∈ S1 and Rθ : S1 → S1 is the rotation of angle θ (irrational in
π), for all positive integer m there exists n > m such that the set An = {Ri

θ(x) :
i = 0, ..., n} determines a division of S1 in intervals with two possible lengths.

Proof. We are going to construct a sequence n1 < n2 < ... < nk < ... such that
Ank

has the desired properties for all k. We can take n1 = 1. We suppose that
nk is already known. We denote xj = Rj

θ(x). Let T1, ..., Tp (with the same length)
and J1, ..., Jq (with the same length) be the open intervals that determine the
partition Ank

in S1. We can always order the intervals so that f(Ti) = Ti+1 and
f(Jj) = Jj+1. Now we consider the point xnk+1. If we assume |Ti| < |Jj |, the point
xnk+1 belongs to J1. Even more, this point and the extreme of J1, different from x,
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determine an interval of length |T1|. This shows that, in general, the point xnk+j

belongs to Jj (j = 1, ..., q), determining, with one of the extremes of Jk, an interval
of length |T1|. Therefore, we can take nk+1 = nk + q, so that Ank+1

has the desire
properties.

Lemma 5.2. If f : S1 → S1 is a continuous function and Rθ is the rotation of
irrational angle θ, for all point x ∈ S1 we have

lim
n→∞

1
n

∑

0≤i≤n

f(Ri
θ(x)) =

∫

S1

f dx.

Proof. By Birkhoff theorem (see [4]) the affirmation is true for almost every point
(with regard to Lebesgue measure in S1). Therefore, by the uniform continuity of
f , for all x ∈ S1 and ε > 0 there exists y such that

1. lim
n→∞

1
n

∑

0≤i≤n

f(Ri
θ(y)) =

∫

S1

f dx.

2. |f(Ri
θ(x))− f(Ri

θ(y))| < ε.

Adding, we obtain
∣∣∣∣∣∣
1
n

∑

0≤i≤n

f(Ri
θ(x))− 1

n

∑

0≤i≤n

f(Ri
θ(y))

∣∣∣∣∣∣
< ε,

so the affirmation follows.

To continue we give the proof of theorem 1.

Proof. We suppose by contradiction, that there exists a quasi regular interval Can-
tor set K, C1-minimal for f , and that Kc has only one orbit of wandering intervals.
Let h : S1 → S1 be the semiconjugate such that h ◦ f = Rθ ◦ h, with Rθ : S1 → S1

the rotation of angle θ (irrational in π). From lemma 4.5 we have that there exists
a covering of K formed by closed intervals H1, ...,Hr, disjoint two to two, such
that f ′/Hi

⋂
K = ai. It is possible to choose the intervals Hi so that each con-

nected component of the complement of
⋃r

i=1 Hi is a connected component of Kc.
If L1, ..., Lr are the connected components of the complement of

⋃r
i=1 Hi, then the

image of each Li by h is a point yi. As f has only one orbit of wandering intervals,
then the points yi are in the same orbit in the rotation Rθ. Let Am, T1, ..., Tp,
J1, ..., Jq be as in lemma 5.1 such that {y1, ..., yr} ⊂ Am. Now, we define

g :
p⋃

1

Ti ∪
q⋃

1

Jj → IR
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such that g(x) = f ′(h−1(x)) (note that g is well defined even in the case that
h−1(x) is an interval). By the choice of the intervals Ti and Jj we have that g is
constant in each of them. Even more, if y is a point of S1 such that h(y) does not
belong to

⋃
j∈N R−j

θ (Am) (preorbit of the extremes of the intervals Ti and Jj) then

F (y, n) =
n−1∑

i=0

log(g(Ri
θ(h(y)))).

Claim: ∫

(
⋃

Ti)∪(
⋃

Jj)
log g dx = 0.

We suppose by contradiction that
∫
(
⋃

Ti)∪(
⋃

Jj)
log g dx 6= 0. Supposing that

∫

(
⋃

Ti)∪(
⋃

Jj)
log g dx > 0,

we have that there exists a continuous function g1 : S1 → S1 such that g1 < g and∫
S1 log g1dx > 0. So, by lemma 5.2 we have that given x ∈ S1 and k > 0 there

exists n = n(x, k) such that
∑n−1

i=0 log(g1(Ri
θ(x))) > k. Therefore, if x ∈ K and

h(x) /∈ ⋃
j∈N R−j

θ (Am) we have that for each k > 0 there exists a positive integer
n such that

F (x, n) =
n−1∑

i=0

log(g(f i(x))) ≥
n−1∑

i=0

log(g1(Ri
θ(h(x)))) > k. (15)

As for each point x ∈ K there exists a positive integer s such that h(fs(x)) does
not belong to

⋃
j∈N R−j

θ (Am), taking k sufficiently large and applying (15) for the
point h(f s(x)), we have that there exists a positive integer n such that

F (x, n) > 0.

Therefore, the result obtained contradicts lemma 3.2. If
∫

S1

log g dx < 0,

working in analogous form we have that for every x ∈ K there exists a positive
integer n such that F (x, n) < 0. This result contradicts lemma 3.1. Then we have
proved the claim. Now, we are going to prove that

∫
⋃

Ti

log g dx =
∫

⋃
Jj

log g dx = 0. (16)
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We denote ai = g/Ti e bj = g/Jj . Then
∫

(
⋃

Ti)∪(
⋃

Jj)
log g dx =

∑
|Ti| log ai+

∑
|Jj | log bj = |T1|

∑
log ai+|J1|

∑
log bj = 0.

(17)
If

∑
log ai 6= 0, from lemma 4.5 we have

∑
log bj/

∑
log ai ∈ IQ. So, by (17) we

have that |T1|/|J1| ∈ IQ and this is a contradiction because the extremes of the
intervals Ti and Jj are in a same orbit of the irrational rotation Rθ. Then

∑
log bj =

∑
log ai = 0.

Now, let y ∈ K be such that x = h(y) ∈ T1. From the construction of the intervals
Ti and Jj we have that Rp+1

θ (x) belongs to T1 or J1. If Rp+1
θ (x) belongs to T1, then

R2p+1
θ (x) belongs to T1 or J1. If Rp+1

θ (x) belongs to J1, then Rp+q+1
θ (x) belongs to

T1 or J1. Proceeding inductively we have that there exists a crescent sequence nk

such that nk+1 − nk only takes values p and q and Rnk+1
θ (x) belongs to T1 or J1.

Therefore, from (16) we have that F (y, nk) = 0, for all k. Finally, given a positive
integer n there exists k0 such that nk0 ≤ n < nk0+1 and therefore,

F (y, n) = F (y, nk0) + F (fnk0 (y), n− nk0) = F (fnk0 (y), n− nk0).

As n−nk0 is limited, F (y, n) is limited too and this contradicts lemma 3.3, and the
proof is finished.

6 Covering and levels

Note that if the quasi regular interval Cantor set K is C1-minimal for f , for each
positive integer n we have that if I is a connected component of Kc, so small as
necessary, I and f(I) are contained in Kn.

Definition 6.1. The positive integer s is the level of an interval I ⊂ S1, if I was
removed from the construction of K in step s (we denote s = L(I)).

Lemma 6.1. If {Tij}, with j ∈ N and i = 1, ..., n, is a family of closed intervals
contained in S1 such that νj = max{|Tij |; i = 1, .., n} has limit 0 when j → ∞,
there exist a positive integer k and a finite set of intervals {Jt}, disjoint two to
two, contained in S1, such that A =

⋃Jt ⊃
⋃n

i=1 Tik and every interval of Ac has
a greater measure than the measure of A.

Proof. For the demonstration we will use finite induction in n. If n = 1 the
demonstration is immediate. We suppose that the property is true for n ≥ 1 and

14



we are going to prove that the property is true for n + 1. For each j ∈ N, we
denote by Bj =

⋃n+1
i=1 Tij and by Ysj (s = 1, ..., nj , with nj ≤ n + 1) the connected

components of the complement of Bj . We will divide the demonstration in two
cases. First, we suppose that aj = min{|Ykj |; k = 1, ..., nj} does not have limit
0 when j → ∞. Then, there exist ε > 0 and a crescent sequence {jt} such that
ajt , > ε for all t. By hypothesis we know that νj → 0 when j → ∞, then there
exists r ∈ N such that νjr < ε/(n + 1), so

|Bjr | ≤
n+1∑

i=1

|Tijr | < (n + 1)
ε

n + 1
= ε.

As ajr > ε, we have that every interval of the complement of Bjr has greater length
than |Bjr |. If we define the intervals Jt as the connected components of Bjr , we have
proved the step of the induction in this case. Now, we suppose that aj → 0 when
j → ∞. We denote by Y∗j one of the connected components of the complement
of Bj such that its length is aj . We can suppose, without loss of generality, that
Y∗j is the interval Arc(T1j , T2j) \ (T1j ∪ T2j) (considering j sufficiently large and
reordering the intervals Tij as necessary). Now we consider the family of intervals
T ∗ij defined as follows. We take

T ∗1j = T1j ∪ Y∗j ∪ T2j

and for i = 2, ..., n
T ∗i,j = Ti+1,j .

Then by the inductive hypothesis there exist a number k and a family of intervals
Jt that satisfy the lemma for the intervals T ∗ij . The number k and the family of
intervals Jt obtained for the family of intervals T ∗ij satisfy the conclusion of the
lemma for the family of intervals Tij , too. This establishes the step of induction
and the proof concludes.

If the point x is the extreme of a connected component of Kc of level s0, for
each integer s > s0 we denote by Is the connected component of Kc closest to x.
Note that if s is sufficiently large then Is is unique.

Definition 6.2. Let x be the extreme of a connected component of Kc of level s0.
For each integer s > s0 we define

ϕx(s) = s− L(f(Is))

.

15



Lemma 6.2. If the quasi regular interval Cantor set K, of regularity different from
0, is C1-minimal for f and x is the extreme of a connected component of Kc of
level s0, then ϕx is upper limited.

Proof. As the regularity of K is not 0, there exists a procedure that determines K
such that δ = inf{µm/νm : m ∈ N} > 0. We suppose by contradiction that for
each k > 0 there exists a positive integer sk, such that ϕ(sk) = sk−L(f(Isk

)) > k.
We denote rk = L(f(Isk

)). By the construction of K we have that µsk
≤ 2−kµrk

.
If Isk

= (ak, bk), with ak between x and bk, we have that there exists θk ∈ [x, ak]
such that d(f(x), f(ak)) = f ′(θk)d(x, ak). So

d(f(x), f(ak)) ≤ f ′(θk)νsk
≤ f ′(θk)

µsk

δ
≤ f ′(θk)

δ
2−kµrk

≤ f ′(θk)
δ

2−kd(f(x), f(ak)).

From here it follows that f ′(θk) → ∞ when k → +∞, and this is a contradiction.

7 Proof of the theorem 2

Proof. We suppose by contradiction that there exists ε > 0 and a diffeomorphism
f , of class C1+ε such that K is minimal for f . By lemmas 4.5 and 4.3 we have that
there exist a positive integer n0 and a point x, extreme of a connected component
of Kc, such that:

1. the restriction of f ′ to K is constant in each connected component of Kn0 .

2. f ′(x) = ν > 1.

3. by the continuity of f ′ we have that if n0 is sufficiently large, for every con-
nected component I of Kc, contained in Kx

n0
(connected component of Kn0

that contains x), we have that |f(I)| > |I|, so f(I) and I have different level.

Given a positive integer n we denote by In = (an, bn) the interval of level n + n0

contained in Kx
n0

nearest to x. We fix m and for each integer n > m we consider
the family of intervals {Ij

n}j∈N with the following properties:

1. the interval I0
n = In.

2. the interval Ij
n is the connected component of Kc with the same level that

the level of f(Ij−1
n ) nearest to x (in the proof we are going to work with a

finite quantity of these).

16



Let q = max{L(I) − L(f(I))} be the integer given by lemma 6.2. We define
pn = min{j : L(Ij

n) ≤ L(Im+q−1) = n0 + m + q − 1}. We need to prove that the
set Dn = {j : L(Ij

n) ≤ L(Im+q−1)} is not empty. We suppose by contradiction
that Dn is empty. Then, for all j we have that |Ij−1

n | < |Ij
n| and that Ij

n is
between x and Im+q−1 and this is a contradiction. So Dn is not empty. Now,
we consider the finite family {Ij

n} with j = 1, ..., pn. By lemma 6.2 follows that
n0 + m + q > L(Ipn

n ) ≥ n0 + m. By the Mean Value Theorem we know that there
exist θj ∈ Ij

n, j = 0, ..., pn − 1 such that
|f(Ij

n)| = f ′(θj)|Ij
n| = |Ij+1

n |. Therefore,

|In| = |Ipn
n |

f ′(θ0)...f ′(θpn−1)
. (18)

We denote rj = L(Ij
n), with j = 0, ..., pn − 1. Note that as i 6= j, ri 6= rj and

rj ≥ m + n0, for every j. For every j, we have that θj and x are in the same
connected component of Krj−1, so from lemma 4.1 and if rj is sufficiently large we
have

|θj − x| < 2
δ2rj−2 .

Therefore, as f is the class C1+ε (this is |f ′(x)− f ′(y)| ≤ k̃|x− y|ε) we have

1− k

ν

1
2(rj−2)ε

<
f ′(θj)

ν
< 1 +

k

ν

1
2(rj−2)ε

, (19)

where k = k̃(2
δ )ε. From (18) e (19) we have

|Ipn
n |

νpn

pn−1∏

i=0

{
1 +

k

ν

(
1

2ri−2

)ε }−1
≤ |In| ≤ |Ipn

n |
νpn

pn−1∏

i=0

{
1− k

ν

(
1

2ri−2

)ε }−1
.

Therefore,

log |Ipn
n | − pn log ν − P2(m) ≤ log |In| ≤ log |Ipn

n | − pn log ν − P1(m) (20)

where

P1(m) =
∞∑

j=m+n0

log
{

1− k

ν

(
1

2j−2

)ε }
≤ log

pn−1∏

i=0

{
1− k

ν

(
1

2ri−2

)ε }
< 0

and

P2(m) =
∞∑

j=m+n0

log
{

1 +
k

ν

(
1

2j−2

)ε }
≥ log

pn−1∏

i=0

{
1 +

k

ν

(
1

2ri−2

)ε }
> 0.
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For each m we define the set Am = {log |Ir|; r > m} (the difference between
this set and the set {log λi} is a finite quantity of elements). Now, we consider
the quotient Am/ log ν.IR = Am as a subset of the affine manifold S = IR/ log ν.IR
that is isomorphic to S1. From the inequality (20) we have that for each m there
exists a finite quantity of closed intervals Tmj , j = 1, ..., q, contained in S such that⋃q

j=1 Tmj ⊃ Am and am = max{|Tmj |; j = 1, ..., q} = P2(m) − P1(m). From the
definitions of P1(m) and P2(m) follows that am has limit 0 when m → ∞. From
lemma 6.1 we know that there exist m0 and a family of intervals Jk contained in
S, with k = 1, ..., h, such that

Am0 ⊂
q⋃

j=1

Tm0j ⊂
⋃
Jk = M

and every connected component of the complement of M has greater length than
|M|. If we consider the lifting of the previous sets we have that there exist a
number δ > 0 and a family of intervals [αs, βs], with αs ≤ βs e βs+1 < αs, s =
1, ...,∞ (they are the lifting of the intervals Jt) such that Am0 ⊂

⋃∞
s=1[αs, βs] and

αs − βs+1 < βs − αs + δ. It is easy to see that this condition implies the Mc Duff
condition and this is a contradiction (see Proposition 4.2 in [2]) .

8 Proof of the theorems 3 and 4

We will begin proving certain lemmas that will be of utility in the demonstrations
of theorems 3 and 4. If I and J are sets contained in S1\K, we denote by Arc(I, J)
the smaller arch that contains I and J .

Lemma 8.1. Let K be a regular interval Cantor set and let I1, I2, I3 and I4 be
connected components of S1\K, disjoint two to two, removed in steps n1, n2, n3 and
n4 of the construction of K, respectively. If n4 ≥ max{n1, n2, n3} and Arc(I3, I4)\
(I3 ∪ I4) is a connected component of Kn4, there exists a positive integer m such
that |K ∩Arc(I1, I2)| = m|K ∩Arc(I3, I4)|.
Proof. From the construction of K, we know that I1, I2, I3, I4 ⊂ S1 \ Kn4 , so
Arc(I1, I2)∩Kn4 is a union of m connected components of Kn4 , that we denote by
K1

n4
, ..., Km

n4
. Then

Arc(I1, I2) ∩K = (Arc(I1, I2) ∩Kn4) ∩K = (
m⋃

i=1

Ki
n4

) ∩K.
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Therefore, |Arc(I1, I2) ∩K| =
∑m

i=1 |Ki
n4
∩K|. So, by the construction of K, we

have
|Arc(I1, I2) ∩K| = m|K1

n4
∩K|. (21)

As Arc(I3, I4) \ (I3 ∪ I4) is a connected component of Kn4 then

|K1
n4
∩K| = |(Arc(I3, I4) \ (I3 ∪ I4)) ∩K| = |Arc(I3, I4) ∩K|. (22)

Then from (21) e (22) we have

|K ∩Arc(I1, I2)| = m|K ∩Arc(I3, I4)|.

Lemma 8.2. If the regular interval Cantor set K, of positive measure, is C1-
minimal for f and f ′(x) > 1 for x ∈ K, f ′(x) is a positive integer.

Proof. Let ε0, {nj} and {λnj} be as in the proof of lemma 3.2, and we consider
ε1 = min{ε0, f ′(x) − 1}. By lemma 4.5 and the construction of K we know that
there exists a positive integer n such that f ′ is constant in the intersection of K with
each connected component of Kn and if n is sufficiently large, by the continuity of
f ′ we have

1
1 + ε1

<
f ′(x1)
f ′(x2)

< 1 + ε1

with x1 and x2 in the same connected component of Kn. Without loss of generality,
we can suppose that x is an extreme of a connected component I of Kc such that
I and f(I) are contained in S1 \ Kn. We consider j0 such that λnj0

is smaller
than the length of some connected components of Kc contained in Kn. For each
j > j0 we consider Ij as the connected component Kc contained in Kx

n (connected
component of Kn that contains x) nearest to x and |Ij | ≥ λnj . Then, we have that
|Ij | → 0 and d(x, Ij) → 0 when j → ∞. This implies that there exists a positive
integer j1 such that if j ≥ j1 then f(Ij) is contained in K

f(x)
n . By the choice of ε1

we have that

d(f(x), f(Ij)) >
f ′(x)
1 + ε1

d(x, Ij) ≥ d(x, Ij). (23)

Now, we will demonstrate that if j ≥ j1 there does not exist another connected
component of Kc with length |f(Ij)|, contained in K

f(x)
n and within f(x) and f(Ij).

By contradiction we suppose that there exists I∗ in the previous conditions. Then
f−1(I∗) is between x and Ij . By the Mean Value Theorem we know that there exists
θ∗ ∈ f−1(I∗) and θj ∈ Ij such that |f−1(I∗)| = |I∗|

f
′
(θ∗)

and |f(Ij)| = f ′(θj)|Ij | so
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|f−1(I∗)| = f ′(θj)
f ′(θ∗) |Ij |. As θ∗ and θj are in the same connected component of Kn,

we have

|Ij |
1 + ε1

< |f−1(I∗)| < |Ij |(1 + ε1)

so

|f−1(I∗)| >
|Ij |

1 + ε1
>

|Ij |
1 + ε0

≥ λnj

1 + ε0
> λnj+1.

From here we conclude that |f−1(I∗)| ≥ λnj and this contradicts the definition of
Ij . More over, utilizing (23) we have that if f(Ij) was removed in the step n1 and
Ij was removed in the step n2, n < n1 < n2. This observation allows us to apply
lemma 8.1, so there exists p ∈ N such that

|K ∩Arc(f(x), f(Ij))| = p|K ∩Arc(x, Ij)|. (24)

As f ′ restrict to K ∩Arc(x, Ij) is constant, then

|f(K ∩Arc(x, Ij))| = f ′(x)|K ∩Arc(x, Ij)| = |K ∩Arc(f(x), f(Ij)|. (25)

Therefore, from (24) e (25) and utilizing that |K| > 0 we have that 1 < f ′(x) =
p ∈ N and this concludes the proof.

To continue we will give the proof of theorem 3.

Proof. We suppose, by contradiction, that K is C1-minimal for f and {mi} is not
limited. By lemmas 4.3 and 8.2 we know that there exists an extreme of a wandering
interval I, that we call x, such that f ′(x) = p ∈ N with p > 1. Therefore, by the
uniform continuity of f ′ and by lemma 4.1 we know that there exists n0 ∈ N such
that f ′/(K∩Kx

n0
) = p, where Kx

n0
is the connected component of Kn0 that contains

x. As {mi} is not limited, there exists i0 sufficiently large such that mi0 > p+2. Let
Ji0 be the interval of level i0 nearest to x and Kx

i0
= [x, yi0 ] (connected component

of Ki0 that contains x). As f ′ restricted to K ∩Kx
n0

is p, then

|f(K ∩Kx
i0)| = |K ∩ [f(x), f(yi0)]| = p|K ∩Kx

i0 |.

Utilizing that K has positive measure we have that the interval [f(x), f(yi0)] con-
tains exactly p connected components of Ki0 . As f(x) is an extreme of f(I) (its
level is greater than i0, if i0 is sufficiently large) and in step i0 we removed more
than p + 2 intervals, the level of f(Ji0) is i0. Therefore |Ji0 | = |f(Ji0)|. Besides,
we have that Ji0 ⊂ Ki0−1 and |Ki0−1| → 0 when i0 → ∞. But then, utilizing the
continuity of f ′, we know that if i0 is sufficiently large |Ji0 | < |f(Ji0)|, and this is
a contradiction.
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The following lemmas will be of utility for the demonstration of theorem 4.

Lemma 8.3. If the regular interval Cantor set K, of positive measure, is C1-
minimal for f , and there exists x ∈ K and a positive integer p (p > 1) such that
f ′(x) = p, then p is multiple of mi + 1 for an i sufficiently large.

Proof. From lemma 4.5 we can suppose that x is an extreme of a connected com-
ponent of Kc. We denote by Ii = (ai, bi) the connected component of Kc of level
i nearest to x (if i is sufficiently large, Ii is determined). Then, f([x, ai]) contains
exactly p connected components of Ki, so the level of f(Ii) is less than or equal to
i. If i is sufficiently large we have that |f(Ii)| > |Ii|, so the level of f(Ii) is less than
i. Therefore, the quantity of connected components of Ki that contains f([x, ai])
is multiple of mi + 1.

Lemma 8.4. If K is a regular interval Cantor set of positive measure, ln
σn

→ 0
when n →∞, where σn is the length of the connected components of Kn and ln is
the length of the open intervals removed in step n of the construction of K.

Proof. From the construction of K we have that |K| = limn→∞ θ1....θn > 0, so
θn → 1. If x is an extreme of some open interval that was removed in step j, then
for all n > j + 1 we have

θn =
|Kn|
|Kn−1| =

|Kx
n |(mn + 1)
|Kx

n−1|
=

|Kx
n|(mn + 1)

|Kx
n|(mn + 1) + mnln

,

so ln
|Kx

n| → 0 when n → +∞.

To continue we will give the proof of theorem 4.

Proof. We suppose by contradiction that K is C1-minimal for f . Let x, I, p and
n0 be as in the proof of theorem 3. For each i > n0, we denote by Ji = (yi, zi) the
wandering interval of level i nearest to f(x). By hypothesis, there exists a positive
integer n0 such that if n ≥ n0, tn+1 − tn > 3p.
Claim 1: For all i > tn0 , if f−1(Ji) is the interval of level j nearest to x then
f−1(Jj) is not the interval of level k = L(f−1(Jj)) nearest to x. We suppose by
contradiction that f−1(Jj) is not in the desired conditions. Therefore [x, f−1(yi)]
is a connected component of Kj and [x, f−1(yj)] is a connected component of Kk.
Then (mi+1 +1)...(mj +1) = p and (mj+1 +1)...(mk +1) = p. Utilizing lemma 8.3
and that q is a prime number we have that there exist less than two elements of the
set {(mi+1 + 1), ..., (mj + 1), ..., (mk + 1)} that are multiple of q. As this set doest
not have more than 2p elements, if i is sufficiently large we have a contradiction.
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Then we have demonstrated claim 1.
Claim 2: If i is sufficiently large there exists k > i such that

|Jk|
|Kf(x)

k |
>

3
2

|Ji|
|Kf(x)

i |
.

By the Mean Value Theorem, for all i, there exist θ1 and θ2 (they depend on
i) contained in [x, f−1(zi)] such that |Ji| = |f−1(Ji)|f ′(θ1) and |(f(x), yi)| =
|(x, f−1(yi))|f ′(θ2). Then

|Ji|
|Kf(x)

i |
=

|Ji|
|(f(x), yi)| =

f ′(θ1)
f ′(θ2)

|f−1(Ji)|
|(x, f−1(yi))| →

|f−1(Ji)|
|(x, f−1(yi))| , (26)

when i →∞. We have two possibilities.

1. If f−1(Ji) is the interval nearest to x of level j = L(f−1(Ji)), from claim 1,
we have that f−1(Jj) is not the interval of level k = L(f−1(Jj)) nearest to x,
therefore |(x, f−1(yj))| > 2.|Kx

k |. Then, utilizing (26),

|Ji|
|Kf(x)

i |
→ |Jj |
|Kf(x)

j |
→ |Jk|
|(x, f−1(yj))| <

|Jk|
2|Kf(x)

k |
,

when i →∞. So, it follows claim 2.

2. If f−1(Ji) is not the interval nearest to x of level k = L(f−1(Ji)), |(x, f−1(yi))| >
2.|Kx

k |. So the demonstration follows in analogous form to the previous item.

From claim 2 we have that |Jn|
|Kf(x)

n | 6→ 0 when n → ∞ and this contradicts lemma

8.4.
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