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Abstract

L Tt is known that not every Cantor set of S' is C'-minimal. In this
work we prove that every member of a subfamily of the called regular interval
Cantor set is not C'-minimal. We also prove in general, for a even large class
of Cantor sets, that any member of such family can be C'**¢-minimal, for any
e> 0.

1 Introduction

If f:8' — S!is a diffeomorphism without periodic points, there exists a unique
set Q(f) € S! minimal for f (we say that Q(f) is C'-minimal for f). In this case
Q(f) is a Cantor set or it is S1. Up to now, the C'-minimal Cantor sets that
are known are the Danjoy examples and its conjugates. However we know that
some families are not C''-minimal. For example, in [2] Mc Duff demonstrates that
the usual middle thirds Cantor set is not C'-minimal and gives some conditions
for a Cantor set that imply that it is not C''-minimal. In [6] we can find other
conditions that imply the no C'-minimality too. In [5] A. Norton demonstrates
that the family of the affine Cantor sets is not C'-minimal too. In this work we
construct new families of Cantor sets that are not C'-minimal and other families
of Cantor sets that are not C'*“-minimal (for any € > 0).

1.1 Regular interval Cantor sets

The regular interval Cantor set construction imitates the procedure utilized to ob-
tain the usual middle thirds Cantor set. Given two sequences {m;} and {6;} with
m; a positive integer and 0 < 0; < 1, we proceed as follows. In the first step we
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remove mqp open intervals with the same measure from the circle, distributed in
the same way, obtaining the closed set K1 = UA;, (i1 = 1,...,m;) with Lebesgue
measure |Ki| = 61, where A;, are the connected components of K;. In the sec-
ond step, we remove msy open intervals of the same measure from each connected
component A; , distributed in the same way, obtaining the closed set Ko = UA; ;,
(ia = 1,...,mq + 1) with measure |K3| = 02|K;|, where A;;, are the connected
components of Ky. Proceeding inductively, we obtain, for each n, a closed set
K, C S!, contained in K,,_1, with measure |K,| = 0,|K,_1|, and K,, = UA;, ;.
(in, = 1,...,my + 1), where A;, ;, are connected components of K,. We define
K = () K,. This set is a Cantor set, and we will call regular interval Cantor
set to every set K constructed in this way.

1.2 Quasi regular interval Cantor sets

Now we are going to give the construction of a family of Cantor sets that contains
the regular interval Cantor sets. Given a sequence {n;} of positive integers with
Y ic ;i < nj, we proceed as follows. In the first step we remove nq open intervals
of the same measure from S, obtaining a closed set K1 = |JAy;, (i1 = 1,...,n1),
where Ay;, are the connected components of K;. In the second step, we remove
ng open intervals of the same measure form Ki, removing at least an interval of
each connected component of Kj, obtaining the closed set Ko = |JAg, (i2 =
1,...,n1 + ng), where Ay;, are the connected components of K5. We do not require
the intervals removed to be likewise distributed. Proceeding inductively, for each
m we obtain a closed set K,, C S contained in K,,_; and we write K,,, = UAmi,,
(i = 1,...,n1+...+ny,) where A,,; = are the connected components of K,,. Then,
we deﬁne K () K. The set K is a Cantor set if, and only if, v, = max{|A,mm\
im=1,...,n14+ ...+ nm} — 0 when m — oo. We will call quasi regular interval
Cantor set to every Cantor set K constructed in this way. Note that with this
procedure we do not obtain all Cantor sets of S*. If u,, = min{|Ami,,| : im =
1,...,n1 + ... + Ny}, the number § = inf{um/vm : m € N} gives an idea of the
irregularity of the Cantor set K. This number depends on the set K and the
procedure to obtain K. Then, we define the regularity of K as the supreme of the
set of 9, taking all the possible procedures to obtain K. Note that if the Cantor
set K is a regular interval Cantor set, its regularity is 1.

2 Main results

Theorem 1. If the Cantor set K is C'-minimal for a diffeomorphism f, and K¢
has only one orbit of wandering intervals, then K is not a quasi reqular interval



Cantor set.

Theorem 2. If K is a quasi reqular interval Cantor set of regularity different from
0, then K is not C'-minimal for any € > 0.

As all regular interval Cantor sets have regularity 1 then, from the previous
theorem, we have the following result.

Corollary 1. If K is a regular interval Cantor set, then K is not C'T¢-minimal
for any € > 0.

If the regular interval Cantor set K has positive measure and we suppose that
it is C''-minimal for f we obtain several conditions for f’. Let m; be the quantity
of intervals removed in the step ¢ of the construction of K. In this case, we have
the following result.

Theorem 3. If K is a reqular interval Cantor set of positive measure and the
sequence {m;} is not limited, then K is not C*-minimal.

Definition 2.1. If K is a regular interval Cantor set, for each prime integer we
define Ay ={i € N:m;+1=0 (mod q)}.

For the case that A, is an infinite set we denote its elements by ¢, (n € N),
with t, < t,+1. Now we can enunciate de following result.

Theorem 4. If K is a regular interval Cantor set of positive measure and there
exists a prime integer q such that Aq is infinite and t, 1 —t,, — 00, then K is not
C'-minimal.

3 Generalities

The following lemmas are going to be very useful in the demonstrations of the main
results.

Definition 3.1. If f : S' — S is a diffeomorphism, then for each x € S* and for
each positive integer n we define F(z,n) = Z:‘L:_ol logf'(fi(x)) = lof(f™)(x).

Lemma 3.1. If the Cantor set K is C'-minimal for f, then there exists v € K
such that F(x,n) >0, for all positive integer n.

Proof. We suppose by contradiction that for all x € K there exists m, such that
F(x,m;) < 0. By the continuity of f’, for each 2z € K there exists d, > 0 such that
for every point y in the interval (x — 0;,2 + 05), F(y,mz) < 0. As the family of
intervals (z — 05, x+9,) with x € K is a covering of K, and K is a Cantor set, then



there exists a finite refinement {I;, i = 1,...,p} of this covering of open intervals,
disjoint two to two, that is a covering of K. So, for each I; there exists m; € N
such that for all y € I; we have F(y,m;) < 0. Besides, S'\ | J!_, ; is a finite union
of closed intervals, each of which is contained in a connected component of K¢ that
we call J;, with ¢ = 1,...,p. We consider m = max{m; :i=1,...,p} and M > 1 the
maximum of f’. We consider a wandering interval T' of the past of J; such that
|T|M™ < min{|Ji|,...,|Jp|}. Now we will demonstrate that if j is a positive integer
then |f7(T)| < |Ji|, and this is a contradiction. By the choice of T, we know that
T is contained in I; for some i. By the Mean Value Theorem, there exists 6 € I;
such that

[f™H(T)] = [T|(F7)'(0).-
As F(0,m;) <0, we have (f™)'(f) <1 and so

(M < IT.

We can repeat this process with f™i(T") instead of T'. Proceeding inductively we
conclude that there exists a sequence vy, s, ..., Vg, ... with v, € {m1,...,mp} such
that for all positive integer r

| fEk=18(T)| < |T].
As for all j there exists 79 > 0 such that > % v < j < 2};0:11 Vi, we have
F(T)] = | fFmEi v (fE () < M™T] < |-
O

Let K be a Cantor set of the circle and let K¢ = ] I;, where I; are the connected
components of K¢ . We define the spectrum of K (Fk) as the orderly set {\;}
(Ait1 < i), with X; the length of I;, for some j.

Lemma 3.2. If the Cantor set K is C'-minimal for f and A\p/Ani1 /> 1, there
exists 1 > 0 and x € K such that F(x,m) < —n, for all positive integer m.

Proof. As A\ /A\n+1 7 1, there exist ¢g > 0 and a sequence {ny} such that 1+¢y <

An
X ’il. Let I, be a connected component of K¢ such that |I,, | > Ay, and for all
Tk

3> 1,|f(In,)] < Any+1- By the choice of I,,, we have that |I,,,| — 0 when k — oo.
Let = be a point of accumulation of the set of the intervals I, (z € K) and {k;} a
sequence such that d(x, I,, ) — 0 when ¢ — oco. Therefore, for every m > 1, there
exists ¢ sufficiently large such that

A

Ly, |
1 < 7 1
+ e < \

ng,+1 o |fm(Inkl)|

Nk .

4



Then

" (Iny,
F(x,m) =log(f™) (z) = log <lim M

. < —log(1 + €p).
2 ) )

O

Lemma 3.3. If the Cantor set K is C'-minimal for f and \p/Ani1 /> 1 then for
every point © € K, F(x,m) is not limited.

Proof. By the transitivity of K (for f), it is enough to demonstrate the property
for any point of K. Let z and the number 1 be as in lemma 3.2 and suppose by
contradiction that F'(x,m) is limited. Therefore if y = inf{F(x,m) : m € N},
there exists a positive integer p such that |F'(z,p) — y| < n/2. So

-n
for all positive integer m. We consider {ny} such that fP*"(z) has limit x when

k — oo. From the uniform continuity of f’ we have that

p—1

|F(f7 (@), prng)—F (z,ptng)| <D [log f/(f7+ (@) ~log f'(f'(x))] = 6(nx) — 0
1=0

when £ — oo. Then
F(fP(z),p+nk) < F(x,p+ni) + 6(ng) < —n+ d(n),

so utilizing (1) we have a contradiction. O

4 Geometric rigidity

In this section we are going to prove two geometric properties for the quasi regular
interval Cantor sets and that if, we suppose that a Cantor set K of this family is
C'-minimal for f, we obtain rigid conditions for f’.

Lemma 4.1. If K is a quast reqular interval Cantor set, p, < 2,211 , for all integer

n>1.

Proof. We are going to prove that if pu,, < 2721%, Pnt1 < %—,7{ Proved this, as 41 < 27
we have demonstrated the lemma. From the construction of K we know that there



exist integers ji, j2 and j3 such that A,;, < 23—?1 and such that A, 1 5, and A, 11 5,
are contained in A,;,. Therefore

, |Anj|  2m
AN | Ant 1o s [Ant1,4s |} < % < o
and from here follows the thesis. O

Lemma 4.2. If K is a quasi reqular interval Cantor set, Ap/An+1 7 1, when
n — oo.

Proof. Let {l;} be the sequence where /; is the length of the open intervals removed
in the step ¢ of the construction of K. From the construction of K we have that the
open intervals removed in the step n are contained in K,,_1 , so from the previous
lemma we have that [,, < 27/2"~2 for n > 2. Then, for n > 2 we have

# ({log \i} N [—(n — 2)log 2 + log 2, 0]) < n. (2)

Suppose by contradiction that A, /A,+1 — 1. Then for all € > 0 there exists ng > 0
such that for all n € N

0 <log Angtn—i —1og Angini1—i <log(l+¢)
with ¢ =0, ...,n, so
0 > log Apg4n > log Ap, — nlog(1l +¢).

Then
#({log A\;} N [log Ap, — nlog(1l +¢),0]) > ng + n. (3)

Utilizing the inequalities (2) e (3) we have
#({log A\i }N[—(n—2) log 2+1log 27, 0]) < n < no+n < #({log A\; }N[log Ap, —n log(1+€),0]).

Therefore
—(n —2)log2+log2m > log A\p, — nlog(1l +e).

As this inequality is true for all n € N and for all € > 0, taking e such that
log(1 + €) < log2 we have a contradiction. O

Lemma 4.3. If a quasi reqular interval Cantor set K is C'-minimal for f, there
exists x € K such that f'(x) > 1.



Proof. From the previous lemma, we know that there exists ¢g > 0 and a crescent
sequence of positive integers {n;} such that A, /Ay, +1 > 1+, for all n;. Let I be
a connected component of K¢. Then, the family {f~"(I)} with ¢ € N is a family
of open intervals, disjoint two to two, so |f~"(I)| — 0 when n — oo. Therefore,
if j is sufficiently large there exists p(j) € N such that |f~PU)(I)| < An;+1 and
|f7PDH(T)[ > Ay,. Then, we have

[P Ay
|f~PO)(D)| — An,41

> 1—|—€0. (4)

Utilizing the Mean Value Theorem, we know that there exists a point 6, €
f~PU)(I) such that ' '
|fPIRD)] = F (B PO

SO
-p()+1(1 ,
T = O ?
From (4) and (5) we have
£1(0,) > 1+ <. (6)

If 2 is an accumulation point of the set {f~PU)(I)}, it is an accumulation point of
the set {0,(;)} too and, as f € C', we have that f'(6,) — f’(z) when j — oo, so
from (6) we obtain that f'(x) > 1. O

If K is a quasi regular interval Cantor set and y € K we denote by Kj, the
connected component of K,, that contains y. The following observations will be of
use for the demonstrations of the next lemmas.

1. If K is a quasi regular interval Cantor set, C'-minimal for f, for all € > 0
there exists a positive integer n(e) such that if n > n(e) and z1,z2 belong to
the same connected component of K,

1 f'(x1)

< <l+e.
1+e¢ f/(:L'Q)

2. For all positive integer n and all point x € K there exists a positive number
v such that if A is an element of the spectrum of K, smaller than v, there

)

exists a connected component of K¢ of length A, contained in Ki(:’f such

that its preimage is contained in K.



Lemma 4.4. If the quasi reqular interval Cantor set K is C'-minimal for f and
x is any point in K, then for all € > 0 and for all integer m if I is a connected
component of K¢ of length so small as necessary, there exists a connected component
I* of K¢ such that

(f' (@)™ _ |I"]

<
1+e |

< (f'(@)" (L +e).

Proof. First we suppose that m > 0. We consider ¢; > 0 sufficiently small and
n = n(e1) as in observation 1. Let K, be as in the construction of K. If I is a
connected component of K¢ of length sufficiently small, there exists I, connected
component of K¢ too, contained in K such that its length is |I|. From the Mean
Value Theorem we have that there exists 6 € I; such that

[f(I) = fO)L] = FO)].
As 0 € K}, utilizing observation 1 we have

f@) _ 1S

1T e W < f(2)(1 + e1).

If I is sufficiently small we can repeat this procedure with f(I;) instead of I. Then
there exists I, connected component of K€, such that

f(@) (D)
e (L)

Proceeding inductively we conclude that there exist I3, ..., I,,, connected compo-
nents of K¢, such that

< f'(z)(1 + €1).

fi(z) _ [fUis)l
L+ea — [f(L)]

withi=1,....,m—1. So

(F@)™ (L))
Ate)” = [

< fl(@)(1+e),

< (f'@)"1+e)™ (7)

Given € > 0 we choose €; > 0 such that (14 €)™ < 1+ €. Then, from (7) follows
the thesis. In the case m < 0 we proceed as follows. If I is a connected component
of K¢, sufficiently small, there exists I7, connected component of K€ too, of length
|1], contained in K™ such that f~1(I1) is contained in KZ. Therefore, there exists
6 € I such that

1]

-1 _ =1y I e
)= ()0 = )



As f71(9) € K%, from observation 1 we have

1 Wl 1 _lta
(1+e1)f'(2) 1] fHo)) @)
So, proceeding as in the first case we obtain the desired result. O

Lemma 4.5. If the quasi regular interval Cantor set K is C'-minimal for f, f’
restricted to K 1is constant by parts. Even more, if the set of values of f' restricted

to K is {a1,...,an}, then loga;/loga; €@ (aj #1).

Proof. Let €y and {n;} be as in the proof of lemma 4.3. We need to prove that
A={f'(z) : x € K} is a finite set. We suppose by contradiction that A is a infinite
set. As f’is continuous in S', the set A has point of accumulation. From here we
conclude that there exist a,b € K, a # b, such that

1 f'(a)
1+ ¢ < f’(b)

< 1. (8)

Let €1 be a positive number such that

1+61<min{ J{:z \/ Z}

From observation 1 we have that there exists n(e1) such that if z; and z9 are in
the same connected component of K,

1 _ fil=)

1+e f "(z2)

Let 17 be a connected component of K¢ contained in the connected component of
K, (e,) that contains the point a. From the construction of K we have that K n(e )

only contains a finite quantity of connected components of K¢. By the Mean Value
Theorem, there exists 61 € I; such that

|F(I)] = | L] f'(61).

<1+e. 9)

Utilizing 9, and that 6; and a are in the same connected component of K, ), we

have
lfllf’( )

S < 7)) < LI+ @) f (a). (10)



If | I1] is sufficiently small there exists I, connected component of S!\ K, of length
| f(11)], such that f~*(I) is in the connected component of K, ., that contains b
(observation 2). Utilizing the Mean Value Theorem there exists 6 € I such that

|12
f(f~1(02))

From the choice of Iy we have that f~!(f2) and b are in the same connected
component of K, ; so applying (9) we obtain

f)] 1
f/(b) 1 + €1

[f7 ()] = [RI(f7) (62) =

|f (1)
f(b)

<|fHIR)| <

(1+er).

From this last inequality and (10) we have

1L f(a)
(1+€1)? f'(b)

and therefore, by the choice of ¢; we have

f'(a)
f1(b)’

< NI < 0]+ )’

|11
1< 1 <1 4e.
|f~1(12)]

Summarizing, we have proved that if I is a connected component of S'\ K with
length sufficiently small, there exists another connected component I* of K¢ such

that
1< |I|/|IT*| <1+ eo.

Taking I, of length A, sufficiently small we have

1. M
|I*| N )\nj+1

14 ¢ > >14¢
and this is a contradiction. Then, A is a finite set.
Now, we suppose by contradiction that there exist ¢ and j such that log a;/log a; ¢
@. We are going to prove (as in the previous case) that if I is a connected component
of K¢ of length sufficiently small, there exists another connected component I* of
K¢ such that

1< 1/IF] < 1+

and we have a contradiction again. As loga;/loga; ¢ @ then for all €; > 0 there
exist integers m and n such that

—e1 <mloga; —nloga; <0,

10



so there exist x,y € K such that

et < (f@)"(f(y) " < L. (11)

From lemma 4.4 we have that given e > 0 and I, connected component of K€,
sufficiently small, there exist I* and I** such that

(/@ _ |1

Tre, < <VE"0te) (12
. P
T ] <@Tte) (13)

Utilizing 11, 12 and 13 we have

S _ 1 (+e)

14
(1+e€)? < | T e~€1 (14)
We take €5 such that
(f' ()" (f (y)"
> 1,
(1 + 62)2
and €7 such that
1 2
@ < 1 + €0-
e 4
So, from 14 we have proved what we want. ]

5 Proof of the theorem 1

For the proof of theorem 1 we need the following two lemmas.

Lemma 5.1. If z € S* and Ry : S' — S is the rotation of angle 0 (irrational in
), for all positive integer m there exists n > m such that the set A, = {Rj(z) :
i=0,..,n} determines a division of S* in intervals with two possible lengths.

Proof. We are going to construct a sequence ny < ng < ... < ng < ... such that
Ay, has the desired properties for all k. We can take ny = 1. We suppose that
ny, is already known. We denote z; = Rg(a;). Let T1, ..., T, (with the same length)
and Ji, ..., J; (with the same length) be the open intervals that determine the
partition A,, in S 1. We can always order the intervals so that f(7;) = Ty41 and
f(Jj) = Jj+1. Now we consider the point z,, 1. If we assume |T;| < |J;|, the point
Zn,+1 belongs to J;. Even more, this point and the extreme of J;, different from =,

11



determine an interval of length |T7|. This shows that, in general, the point x,, 4 ;
belongs to J; (j =1, ..., q), determining, with one of the extremes of .Ji, an interval
of length |T1|. Therefore, we can take nj41 = ng + ¢, so that Ay, has the desire
properties. ]

Lemma 5.2. If f : S' — S' is a continuous function and Ry is the rotation of
irrational angle 6, for all point x € S' we have

1 .
li — R = dx.
Tim nO;nf( (2)) /S e

Proof. By Birkhoff theorem (see [4]) the affirmation is true for almost every point
(with regard to Lebesgue measure in S'). Therefore, by the uniform continuity of
f, for all 2 € S and £ > 0 there exists y such that

Lodim = S F(R)(y) = [t

2. |f(Ry(2)) — f(Ry(w))] <e.
Adding, we obtain

1 i 1 i
~ > ) -~ > f(Ryw)| <e
0<i<n 0<i<n
so the affirmation follows. O

To continue we give the proof of theorem 1.

Proof. We suppose by contradiction, that there exists a quasi regular interval Can-
tor set K, C''-minimal for f, and that K¢ has only one orbit of wandering intervals.
Let h : S — S! be the semiconjugate such that ho f = Rgo h, with Rg : S' — S*
the rotation of angle # (irrational in 7). From lemma 4.5 we have that there exists
a covering of K formed by closed intervals Hy, ..., H,, disjoint two to two, such
that f'/H; (K = a;. It is possible to choose the intervals H; so that each con-
nected component of the complement of | J;_, H; is a connected component of K°.
If Ly, ..., L, are the connected components of the complement of | J;_, H;, then the
image of each L; by h is a point y;. As f has only one orbit of wandering intervals,
then the points y; are in the same orbit in the rotation Ry. Let A,,, T1,...,T},
Ji,...,Jg be as in lemma 5.1 such that {yi,...,yr} C A;. Now, we define

p q
g:UTiUUJj—>IR
1 1

12



such that g(z) = f'(h~!(z)) (note that g is well defined even in the case that
h~1(z) is an interval). By the choice of the intervals 7; and J; we have that g is
constant in each of them. Even more, if y is a point of S ! such that h(y) does not
belong to U;en Ry 7(A;,) (preorbit of the extremes of the intervals 7; and J;) then

n—1
F(y,n) =) log(g(Ry(h(y)))).
=0

Claim:
/ log gdx = 0.
UTHuU J5)

We suppose by contradiction that f(U U ;) log g dx # 0. Supposing that

/ log gdx > 0,
UTHuU J;)

we have that there exists a continuous function g; : S' — S! such that g; < g and
f51 log g1dz > 0. So, by lemma 5.2 we have that given € S! and k > 0 there
exists n = n(x, k) such that Z?:_ol log(g1(Rj(x))) > k. Therefore, if x € K and
h(z) & Ujen Re_j(Am) we have that for each k > 0 there exists a positive integer
n such that

n—1 n—1
F(z,n) = log(g(f'(z))) > D log(g1(Rj(h(x)))) > k- (15)
=0 =0

As for each point x € K there exists a positive integer s such that h(f*(x)) does

not belong to J,en R,7(Ap), taking k sufficiently large and applying (15) for the
point h(f*(x)), we have that there exists a positive integer n such that

F(z,n) > 0.

Therefore, the result obtained contradicts lemma 3.2. If

/ log g dx < 0,
S1

working in analogous form we have that for every x € K there exists a positive
integer n such that F(x,n) < 0. This result contradicts lemma 3.1. Then we have
proved the claim. Now, we are going to prove that

/ loggdx = / log gdx = 0. (16)
UT: UJ;

J
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We denote a; = g/T; e bj = g/J;. Then

loggdr =Y [Ti|logai+>_ |J;|logb; = T3] > logas+|J1| > logb; = 0.

(17)
If Y loga; # 0, from lemma 4.5 we have ) logb;/> loga; € @. So, by (17) we
have that |T1|/|Ji| € @ and this is a contradiction because the extremes of the
intervals T; and J; are in a same orbit of the irrational rotation Rg. Then

Zlogbj = Zlogai =0.

Now, let y € K be such that = h(y) € T1. From the construction of the intervals
T; and J; we have that R§+1(x) belongs to 17 or Jy. If Rgﬂ(m) belongs to 17, then
R’ (2) belongs to Ty or Jy. If RY™ () belongs to Jy, then RYT™ () belongs to
Ty or Ji. Proceeding inductively we have that there exists a crescent sequence ny
such that ngy; — ng only takes values p and ¢ and Rg’“ﬂ(x) belongs to T3 or Jj.
Therefore, from (16) we have that F'(y,n;) = 0, for all k. Finally, given a positive
integer n there exists kg such that ny, < n < ny,4+1 and therefore,

F(y,n) = F(y, i) + F(f™0 (y),n = ngy) = F(f™0(y),n — ngy ).

/(U Ti)u(U J5)

As n —ny,is limited, F'(y,n) is limited too and this contradicts lemma 3.3, and the
proof is finished. O

6 Covering and levels

Note that if the quasi regular interval Cantor set K is C''-minimal for f, for each
positive integer n we have that if I is a connected component of K¢, so small as
necessary, I and f(I) are contained in K.

Definition 6.1. The positive integer s is the level of an interval I C S*, if I was
removed from the construction of K in step s (we denote s = L(I)).

Lemma 6.1. If {7;;}, with j € N and i = 1,...,n, is a family of closed intervals
contained in S' such that v; = max{|T;;|;i = 1,..,n} has limit 0 when j — oo,
there exist a positive integer k and a finite set of intervals {J;}, disjoint two to
two, contained in S*, such that A =\JJ D U, Tix. and every interval of A° has
a greater measure than the measure of A.

Proof. For the demonstration we will use finite induction in n. If n = 1 the
demonstration is immediate. We suppose that the property is true for n > 1 and

14



we are going to prove that the property is true for n + 1. For each j € N, we
denote by B; = U 7;; and by Vy; (s = 1,...,nj, with n; <n + 1) the connected
components of the complement of B;. We will divide the demonstration in two
cases. First, we suppose that a; = min{|V;[;k = 1,...,n;} does not have limit
0 when j — oo. Then, there exist ¢ > 0 and a crescent sequence {j;} such that
aj,,> € for all t. By hypothesis we know that v; — 0 when j — oo, then there
exists € N such that v;, <¢e/(n+1), so

n+1
€

B | < T 1) —— ==«
|]r—;|2]r|<(n+ )n+1 €

As aj, > €, we have that every interval of the complement of B;, has greater length
than |B;,|. If we define the intervals J; as the connected components of B, , we have
proved the step of the induction in this case. Now, we suppose that a; — 0 when
J — o0o0. We denote by V7 one of the connected components of the complement
of Bj such that its length is a;. We can suppose, without loss of generality, that
Y; is the interval Arc(71j,Ts5) \ (715 U To;) (considering j sufficiently large and
reordering the intervals 7;; as necessary). Now we consider the family of intervals
7;; defined as follows. We take

T =T UY; UTyy

and for i = 2,...,n

T = Tiv1-
Then by the inductive hypothesis there exist a number k£ and a family of intervals
J: that satisfy the lemma for the intervals ’]:J“ The number £ and the family of
intervals J; obtained for the family of intervals 7;% satisfy the conclusion of the
lemma for the family of intervals 7;;, too. This establishes the step of induction
and the proof concludes. O

If the point z is the extreme of a connected component of K¢ of level sy, for
each integer s > sy we denote by I; the connected component of K¢ closest to x.
Note that if s is sufficiently large then I is unique.

Definition 6.2. Let x be the extreme of a connected component of K¢ of level sg.
For each integer s > sg we define

(pm(s) =5— E(f(Is))

15



Lemma 6.2. If the quasi regular interval Cantor set K, of reqularity different from
0, is Ct-minimal for f and x is the extreme of a connected component of K¢ of
level sg, then @, is upper limited.

Proof. As the regularity of K is not 0, there exists a procedure that determines K
such that 6 = inf{p,/vm : m € N} > 0. We suppose by contradiction that for
each k > 0 there exists a positive integer sy, such that ¢(s;) = s — L(f(Ls,)) > k.
We denote 1, = L(f(I5,)). By the construction of K we have that us, < 2 %pu,, .
If I, = (ak,by), with a; between = and by, we have that there exists 6y € [z, a]
such that d(f(x), f(ax)) = f(6k)d(z,ax). So

A(F@). Fla)) < £ 0w, < flo)e < L0y, < SO

27%d(f(x), f(ar)).

From here it follows that f’(6x) — oo when k — +o00, and this is a contradiction.
O

7 Proof of the theorem 2

Proof. We suppose by contradiction that there exists ¢ > 0 and a diffeomorphism
f, of class C'*€ such that K is minimal for f. By lemmas 4.5 and 4.3 we have that
there exist a positive integer ng and a point x, extreme of a connected component
of K¢, such that:

1. the restriction of f’ to K is constant in each connected component of K.
2. fl(z)=v>1

3. by the continuity of f’ we have that if ng is sufficiently large, for every con-
nected component I of K¢, contained in Kj; (connected component of Ky,
that contains z), we have that | f(I)| > |I|, so f(I) and I have different level.

Given a positive integer n we denote by I,, = (ay, b,) the interval of level n + ng
contained in K7 nearest to z. We fix m and for each integer n > m we consider

the family of intervals {L{} jen with the following properties:
1. the interval Ig =1,.

2. the interval I is the connected component of K¢ with the same level that
the level of f(I3 ") nearest to z (in the proof we are going to work with a
finite quantity of these).

16



Let ¢ = max{ﬁ( ) — L(f(I))} be the integer given by lemma 6.2. We define
pn = min{j : L(I}) < L(Imtq—1) = no+m +q— 1}. We need to prove that the
set Dy, = {j : L(I}) < L(Iniq_1)} is not empty. We suppose by contradiction
that D, is empty. Then, for all j we have that [IJ™'| < |I4| and that I}, is
between x and I,,44—1 and this is a contradiction. So D, is not empty. Now,
we consider the finite family {Iﬂl} with j = 1,...,p,. By lemma 6.2 follows that
no +m+q > L(IE") > ng + m. By the Mean Value Theorem we know that there
exist 0; € I%, j=0,...,pn — 1 such that
|F(I3)| = f/(6;)|13] = |I,*"|. Therefore,

5"
f1(00)...f"(6p,—1)

We denote r; = E(I%), with j = 0,...,p, — 1. Note that as i # j, r; # r; and
rj > m + ng, for every j. For every j, we have that §; and = are in the same
connected component of K., 1, so from lemma 4.1 and if 7; is sufficiently large we
have

|In| =

(18)

2
105 — 2] < 5505
Therefore, as f is the class C1¢ (this is | f/(z) — f'(y)| < klz — y|) we have
ko1 £(0;) ko1
L= Dame < <t (19)

where k = E(%)E From (18) e (19) we have

n—1 pn—1 €
| 15| . k(1 \ ! 1B k(1 -1
Pn H {1 + ; ori—2 } < ’In’ < vbn H {1 - ; ori—2 } ’
=0 =0
Therefore,

log |[I,"| — pnlog v — Py(m) < log |I| < log|I7"| — pplogv — P1(m) (20)

where
pim = 5 e (51) YT 0 (1) <
=m-+ng
and
Pym) = i log {1+ k <2J12>6} >1ogpi_£1{1+ i (21 )} > 0.
j=m-+ng i
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For each m we define the set A,, = {log|l.|;r > m} (the difference between
this set and the set {log\;} is a finite quantity of elements). Now, we consider
the quotient A,,/logv.IR = A,, as a subset of the affine manifold S = IR/ logv.IR
that is isomorphic to S'. From the inequality (20) we have that for each m there
exists a finite quantity of closed intervals 7,,;, j = 1, ..., ¢, contained in S such that
Uj=1 Tmj D A and am = max{|Zn;l;j = 1,...,q} = P(m) — Pi(m). From the
definitions of Pi(m) and Pa(m) follows that a,, has limit 0 when m — oco. From
lemma 6.1 we know that there exist mg and a family of intervals J; contained in
S, with kK =1, ..., h, such that

q
Amg €| Tmoj €| J Tk = M
j=1

and every connected component of the complement of M has greater length than
|IM|. If we consider the lifting of the previous sets we have that there exist a
number § > 0 and a family of intervals [as, Gs], with as < (s e fsy1 < as, 8§ =
1,...,00 (they are the lifting of the intervals J;) such that A,,, C [Joo [, 5] and
s — Bst1 < Bs — as + 6. It is easy to see that this condition implies the Mc Duff
condition and this is a contradiction (see Proposition 4.2 in [2]) .

O]

8 Proof of the theorems 3 and 4

We will begin proving certain lemmas that will be of utility in the demonstrations
of theorems 3 and 4. If I and J are sets contained in S'\ K, we denote by Arc(I, J)
the smaller arch that contains I and J.

Lemma 8.1. Let K be a reqular interval Cantor set and let Iy, Io, I3 and I, be
connected components of S'\ K, disjoint two to two, removed in steps n1,na,n3 and
nyg of the construction of K, respectively. If ngy > max{ni,na,ns} and Arc(Is, 1)\
(I3 U I4) is a connected component of K,,, there exists a positive integer m such
that |K N Are(Ih, I2)| = m|K N Arc(Is, I4)].

Proof. From the construction of K, we know that Iy, Iy, I3, Iy C S'\ K,,, so
Arc(Iy,I2) N Ky, is a union of m connected components of K,,, that we denote by
K}wm?Kﬁ' Then

Arc(li, ) N K = (Are(I, I,) N K, )N K = (| JKi,) N K.
=1
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Therefore, |Arc(l1, 1) N K| = 7", |K: N K]|. So, by the construction of K, we
have
|Are(li, b) N K| = m|K,, NK|. (21)

As Are(Is, 14) \ (I3 U Iy) is a connected component of K, then
K, N K| = |(Arc(I3, 1) \ (I3 U 1)) N K| = |Are(I3, I,) N K|. (22)
Then from (21) e (22) we have
|K N Arc(1y, I2)| = m|K N Are(1s, 14)].
O

Lemma 8.2. If the reqular interval Cantor set K, of positive measure, is C'-
minimal for f and f'(x) > 1 for x € K, f'(x) is a positive integer.

Proof. Let €, {n;} and {\,,} be as in the proof of lemma 3.2, and we consider
e1 = min{eo, f’(z) — 1}. By lemma 4.5 and the construction of K we know that
there exists a positive integer n such that f’ is constant in the intersection of K with
each connected component of K,, and if n is sufficiently large, by the continuity of
f' we have

1 f'(@1)

< <l+e
1+e  fl(z2) !

with x1 and 9 in the same connected component of K. Without loss of generality,
we can suppose that x is an extreme of a connected component I of K¢ such that
I and f(I) are contained in S'\ K,. We consider jo such that Anj, is smaller
than the length of some connected components of K¢ contained in K,. For each
J > jo we consider I; as the connected component K¢ contained in K}, (connected
component of K, that contains x) nearest to x and |I;| > A,,. Then, we have that

|I;| — 0 and d(z,I;) — 0 when j — oco. This implies that there exists a positive
(z)

integer ji such that if j > j; then f(I;) is contained in K,{f
we have that ,
f'(z)

d(f(z). F(1) >

Now, we will demonstrate that if j > j; there does not exist another connected
component of K¢ with length |f(I;)|, contained in K and within f(x) and f(I;).
By contradiction we suppose that there exists I* in the previous conditions. Then
f71(I*) is between z and I j. By the Mean Value Theorem we know that there exists

6 € f7N(I") and 6; € I such that |~ (1) = FGh and [f(I)] = f(6)|L] so

. By the choice of ¢;

d(a, 1) > d(w, I;). (23)
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lf~H(I1)| = ]{:égig |I;]. As 0" and 6; are in the same connected component of K,
we have

|IJ| —1 *
— I L:|(1
Fle <Nl < 1Ll e)
" I | A
I > o> > A

1+¢ 1+e = 1+¢

From here we conclude that |f~*(I*)| > X,, and this contradicts the definition of
I;. More over, utilizing (23) we have that if f(/;) was removed in the step n; and
I; was removed in the step no2, n < n; < nz. This observation allows us to apply
lemma 8.1, so there exists p € N such that

K O Are(£ (@), £;)] = pIK 0 Are(o, 1) (24
As f’ restrict to K N Arc(x,I;) is constant, then

(K A Ave(a, I)))| = ['(@)|K N Ave(e, )| = |K 0 Are(f(2), f(I)]. (25)

Therefore, from (24) e (25) and utilizing that |K| > 0 we have that 1 < f'(z) =
p € N and this concludes the proof. ]

To continue we will give the proof of theorem 3.

Proof. We suppose, by contradiction, that K is C'-minimal for f and {m;} is not
limited. By lemmas 4.3 and 8.2 we know that there exists an extreme of a wandering
interval I, that we call z, such that f'(z) = p € N with p > 1. Therefore, by the
uniform continuity of f’ and by lemma 4.1 we know that there exists ng € N such
that f'/(KNK;}, ) = p, where K is the connected component of K, that contains
x. As {m;} is not limited, there exists i¢ sufficiently large such that m;, > p+2. Let
Ji, be the interval of level iy nearest to  and K} = [, y;,] (connected component
of K;, that contains x). As f’ restricted to K N K, is p, then

(KN EKGQ)| = [K N [f(2), f(yio)l] = plK 0 K.

Utilizing that K has positive measure we have that the interval [f(z), f(yi,)] con-
tains exactly p connected components of K;,. As f(x) is an extreme of f(I) (its
level is greater than iy, if ig is sufficiently large) and in step ip we removed more
than p + 2 intervals, the level of f(J;,) is ig. Therefore |J;,| = |f(Ji,)|- Besides,
we have that J;, C K;,—1 and |K;,—1| — 0 when i9p — oco. But then, utilizing the
continuity of f’, we know that if ig is sufficiently large |J;,| < |f(Ji,)|, and this is
a contradiction. O
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The following lemmas will be of utility for the demonstration of theorem 4.

Lemma 8.3. If the reqular interval Cantor set K, of positive measure, is C-
minimal for f, and there exists x € K and a positive integer p (p > 1) such that
f'(x) = p, then p is multiple of m; + 1 for an i sufficiently large.

Proof. From lemma 4.5 we can suppose that x is an extreme of a connected com-
ponent of K¢. We denote by I; = (a;, b;) the connected component of K¢ of level
i nearest to z (if ¢ is sufficiently large, I; is determined). Then, f([z,a;]) contains
exactly p connected components of K;, so the level of f(I;) is less than or equal to
i. If i is sufficiently large we have that | f(I;)| > |I;], so the level of f(I;) is less than
i. Therefore, the quantity of connected components of K; that contains f([z, a;])
is multiple of m; + 1. O

Lemma 8.4. If K is a regular interval Cantor set of positive measure, (g—’; — 0
when n — oo, where o, s the length of the connected components of K, and l,, is
the length of the open intervals removed in step n of the construction of K.

Proof. From the construction of K we have that |K| = lim,; . 61....0, > 0, so
0, — 1. If x is an extreme of some open interval that was removed in step j, then
for all n > 5 + 1 we have

o Kl Kt D) |Kgl(m 1)
CTTKal TIKET TRl ma D)+ maly

SO Il(”z — 0 when n — +o0.
[KE ]

To continue we will give the proof of theorem 4.

Proof. We suppose by contradiction that K is C'-minimal for f. Let x, I, p and
ng be as in the proof of theorem 3. For each ¢ > ng, we denote by J; = (yi, z;) the
wandering interval of level i nearest to f(z). By hypothesis, there exists a positive
integer ng such that if n > ng, t,41 —tn > 3p.

Claim 1: TFor all i > t,,, if f~1(J;) is the interval of level j nearest to = then
f7Y(J;) is not the interval of level k = L(f~1(.J;)) nearest to z. We suppose by
contradiction that f~!(.J;) is not in the desired conditions. Therefore [z, f~*(y;)]
is a connected component of K; and [z, f~!(y;)] is a connected component of K.
Then (miy1+1)...(mj +1) = p and (mj41+1)...(my + 1) = p. Utilizing lemma 8.3
and that ¢ is a prime number we have that there exist less than two elements of the
set {(mjy1+1),...,(m; +1),..., (mg + 1)} that are multiple of ¢. As this set doest
not have more than 2p elements, if ¢ is sufficiently large we have a contradiction.
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Then we have demonstrated claim 1.
Claim 2: 1f ¢ is sufficiently large there exists k > ¢ such that

| J| 3 |Jil
) 21

By the Mean Value Theorem, for all i, there exist §; and 0y (they depend on
i) contained in [z, f~!(;)] such that |Jj| = |f~'(/)If'(61) and |(f(2),y)| =
|z, f~ ()| £ (62). Then

2 /1 i (G B ¥ e )| I (€] (26)

K@) @)yl 02 1@ T wa)l @ f )l

when ¢ — oco. We have two possibilities.

1. If f=1(J;) is the interval nearest to x of level 5 = L(f~1(J;)), from claim 1,
we have that f~1(J;) is not the interval of level k = L(f~!(J;)) nearest to z,
therefore |(z, f~1(y;))| > 2.|K¥|. Then, utilizing (26),

A /1 | J| | J|
PR L (O e ) [T L

when ¢ — oco. So, it follows claim 2.

2. If f~1(J;) is not the interval nearest to x of level k = L(f~1(J;)), |(z, f~ ()| >
2.|KF|. So the demonstration follows in analogous form to the previous item.
IJnl
K|
8.4. O

From claim 2 we have that

+ 0 when n — oo and this contradicts lemma
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